Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Fungi and Lichens

  • Bettina Weber
  • Burkhard Büdel
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_95


Fungi . Saprophytic, parasitic, or symbiotic living organisms, mainly filamentous (hyphae), rarely unicellular. Cell walls are of chitin or other non-cellulose compounds.

Lichens . Symbiotic organisms composed of a fungal partner, the mycobiont , and one or more photosynthetic partners, the photobiont .



Fungi are a group of eukaryotic, heterotrophic organisms with their thallus on or in the substratum. The thallus can be unicellular (rarely) or filamentous (mostly), the latter being either composed of septate or nonseptate hyphae and often forming a more or less defined web of filaments (mycelium). The cell wall is typically chitinized or composed of other non-cellulose compounds. The spore forming thallus (sporocarp) can be microscopic or macroscopic with limited tissue differentiation. Fungi are cosmopolitan and ubiquitous, saprotrophic, mutualistic (mycorrhizal, lichen-forming), or parasitic. A number of rock-inhabiting fungi belong to the...

This is a preview of subscription content, log in to check access


  1. Ahmadjian, V., 1993. The Lichen Symbiosis. New York: Wiley.Google Scholar
  2. Ariño, X., and Saiz-Jimenez, C., 1996. Lichen deterioration of consolidants used in the conservation of stone monuments. Lichenologist, 28(4), 391–394.Google Scholar
  3. Badger, M. R., Pfanz, H., Büdel, B., Heber, U., and Lange, O. L., 1993. Evidence for the functioning of photosynthetic CO2 concentration mechanisms in lichens containing green algal and cyanobacterial photobionts. Planta, 191, 57–70.Google Scholar
  4. Belnap, J., Büdel, B., and Lange, O. L., 2003. Biological soil crusts: characteristics and distribution. In Belnap, J., and Lange, O. L. (eds.), Ecological Studies 150: Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer, pp. 3–30.Google Scholar
  5. Benthelin, J., 1988. Microbial weathering processes in natural environments. In Lerman, A., and Meybeck, M. (eds.), Physical and Chemical Weathering in Geochemical Cycles. Berlin: Springer, pp. 33–60.Google Scholar
  6. Bold, H. C., and Wynne, M. J., 1985. Introduction to the Algae. Structure and Reproduction, 2nd edn. Englewood Cliffs: Prentice-Hall.Google Scholar
  7. Brown, R. M., Jr., Larson, D. A., and Bold, H. C., 1964. Airborne algae: their abundance and heterogeneity. Science, 143, 583–585.Google Scholar
  8. Büdel, B., 2003. Biological soil crusts in european temperate and mediterranean regions. In Belnap, J., and Lange, O. L. (eds.), Ecological Studies 150: Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer, pp. 75–86.Google Scholar
  9. Büdel, B., and Lange, O. L., 1991. Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Botanica Acta, 104, 361–366.Google Scholar
  10. Büdel, B., and Scheidegger, C., 2008. Thallus morphology and anatomy. In Nash III, T.H. (ed.), Lichen Biology. Cambridge, Cambridge University Press, pp. 40–68.Google Scholar
  11. Büdel, B., Becker, U., Follmann, G., and Sterflinger, K., 2000. Algae, fungi, and lichens on inselbergs. In Porembski, S., and Barthlott, W. (eds.), Inselbergs. Berlin: Springer, pp. 69–90.Google Scholar
  12. Büdel, B., Weber, B., Kühl, M., Pfanz, H., Sültemeyer, D., and Wessels, D., 2004. Reshaping of sandstone surfaces by cryptoendolithic cyanoabcteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology, 2, 261–268.Google Scholar
  13. Burford, E. P., Fomina, M., and Gadd, G. M., 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67, 1127–1155.Google Scholar
  14. Chen, J., Blume, H. P., and Beyer, L., 2000. Weathering of rocks induced by lichen colonization - a review. Catena, 39, 121–146.Google Scholar
  15. Demmig-Adams, B., Máguas, C., Adams, III, W. W., Meyer, A., Kilian, E., and Lange, O. L., 1990. Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta, 180, 400–409.Google Scholar
  16. Diakumaku, E., Gorbushina, A. A., Krumbein, W. E., Panina, L., and Soukharjevski, S., 1995. Black fungi in marble and limestones - an aesthetical, chemical and physical problem for the conservation of monuments. Science of the Total Environment, 167, 295–304.Google Scholar
  17. Dietz, S., Büdel, B., Lange, O. L., and Bilger, W., 2000. Transmittance of light through the cortex of lichens from contrasting habitats. Bibliotheca Lichenologica, 75, 171–182.Google Scholar
  18. Dornieden, T., Gorbushina, A. A., and Krumbein, W. E., 1997. Änderungen von physikalischen Eigenschaften von Marmor durch Pilzbewuchs. International Journal for Restauration of Buildings and Monuments, 3, 441–456.Google Scholar
  19. Ertl, L., 1951. Über die Lichtverhältnisse in Laubflechten. Planta, 39, 245–270.Google Scholar
  20. Friedl, T., and Büdel, B., 2008. Photobionts. In Nash III, T.H. (ed.), Lichen Biology. Cambridge, Cambridge University Press, pp. 9–26.Google Scholar
  21. Friedmann, E. I., 1982. Endolithic microorganisms in the Antarctic cold desert. Science, 193, 1247–1249.Google Scholar
  22. Friedmann, E. I., and Weed, R., 1987. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science, 236, 703–705.Google Scholar
  23. Gadd, G. M., 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, 47–92.Google Scholar
  24. Galloway, D. J., 1996. Lichen biogeography. In Nash III, T.H. (ed.), Lichen Biology. Cambridge, Cambridge University Press, pp. 199–216.Google Scholar
  25. Geiser, D. M., Gueidan, C., Miadlikowska, J., Lutzoni, F., Kauff, F., Hofstetter, V., Fraker, E., Schoch, C. L., Tibell, L., Untereiner, W. A., and Aptroot, A., 2006. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia, 98, 1053–1064.Google Scholar
  26. Golubic, S., Friedman, I., and Schneider, J., 1981. The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology, 51(2), 475–478.Google Scholar
  27. Gorbushina, A. A., 2003. Microcolonial fungi: survival potential of terrestrial vegetative structures. Astrobiology, 3, 543–554.Google Scholar
  28. Gorbushina, A. A., 2007. Life on the rocks. Environmental Microbiology, 9, 1613–1631.Google Scholar
  29. Green, T. G. A., and Snelgar, W. P., 1982. Carbon dioxide exchange in lichens: relationship between the diffusive resistance of carbon dioxide and water vapour. Lichenologist, 14, 255–260.Google Scholar
  30. Green, T. G. A., Kilian, E., and Lange, O. L., 1991. Pseudocyphellaria dissimilis: a desiccation-sensitive, highly shade-adapted lichen from New Zealand. Oecologia, 85, 498–503.Google Scholar
  31. Grotzinger, J., Jordan, T. H., Press, F., and Siever, R., 2006. Understanding Earth. 5th edn. New York: W.H. Freeman.Google Scholar
  32. Hahn, S., Speer, M., Meyer, A., and Lange, O. L., 1989. Photosynthetische Primärproduktion von epigäischen Flechten im “Mainfränkischen Trockenrasen”. I. Tagesläufe von Mikroklima, Wassergehalt und CO2-Gaswechsel zu den verschiedenen Jahreszeiten.  Flora, 182, 313–339.Google Scholar
  33. Henssen, A., 1987. Lichenothelia, a genus of microfungi on rocks. Bibliotheca Lichenologica, 25, 257–293.Google Scholar
  34. Honegger, R., 1996. Mycobionts. In Nash III, T.H. (ed.), Lichen Biology. Cambridge, Cambridge University Press, pp. 24–36.Google Scholar
  35. Kappen, L., 1973. Responses to extreme environments. In Ahmadjan, V., and Hale, M. (eds.), The Lichens. London: Academic, pp. 311–380.Google Scholar
  36. Kappen, L., 1988. Ecophysiological relationships in different climatic regions. In Galun, M. (ed.), Handbook of Lichenology. Boca Raton: CRC, Vol. 2, pp. 39–99.Google Scholar
  37. Kappen, L., and Friedmann, E. I., 1983. Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens. Polar Biology, 1, 227–232.Google Scholar
  38. Kershaw, K. A., 1985. Physiological Ecology of Lichens. Cambridge: Cambridge University Press.Google Scholar
  39. Krumbein, W. E., and Jens, J., 1981. Biogenic rock varnishes of the Negev Desert (Israel): an ecological study of iron and manganese transformation by cyanobacteria and fungi.  Oecologia, 50, 25–38.Google Scholar
  40. Lange, O. L., 1953. Hitze- und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora, 140, 39–97.Google Scholar
  41. Lange, O. L., 1969. Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora, 158, 324–359.Google Scholar
  42. Lange, O. L., 2002. Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation. Flora, 197, 233–249.Google Scholar
  43. Lange, O. L., and Green, T. G. A., 1997. High thallus water contents can limit photosynthetic productivity of crustose lichens in the field. Bibliotheca Lichenologica, 68, 81–99.Google Scholar
  44. Lange, O. L., and Green, T. G. A., 2005. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia, 142, 11–19.Google Scholar
  45. Lange, O. L., and Wagenitz, G., 2003. What is a “phycolichen”? differences and changes in the meaning of an old lichenological term. Lichenologist, 35(4), 341–345.Google Scholar
  46. Lange, O. L., Büdel, B., Meyer, A., and Kilian, E., 1993. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist, 25(2), 175–189.Google Scholar
  47. Lange, O. L., Green, T. G. A., Reichenberger, H., and Meyer, A., 1996. Photosynthetic depression at high water contents in lichens: concurrent use of gas exchange and fluorescence techniques with a cyanobacterial and a green algal Peltigera species. Botanica Acta, 109, 43–50.Google Scholar
  48. Lange, O. L., Belnap, J., Reichenberger, H., and Meyer, A., 1997. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora, 192, 1–15.Google Scholar
  49. Lange, O. L., Green, T. G. A., and Reichenberger, H., 1999. The response of lichen photosynthesis to external CO2 concentration and its interaction with thallus water-status. Journal of Plant Physiology, 154, 157–166.Google Scholar
  50. Lange, O. L., Büdel, B., Meyer, A., Zellner, H., and Zotz, G., 2000. Lichen carbon gain under tropical conditions: water relations and CO2 exchange of three Leptogium species of a lower montane rainforest in Panama. Flora, 195, 172–190.Google Scholar
  51. Lange, O. L., Green, T. G. A., and Heber, U., 2001. Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? Journal of Experimental Botany, 52(363), 2033–2042.Google Scholar
  52. Lange, O. L., Büdel, B., Meyer, A., Zellner, H., and Zotz, G., 2004. lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rainforest in Panama. Lichenologist, 36(5), 329–342.Google Scholar
  53. Miadlikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner, J., Reeb, V., Hodkinson, B. P., Kukwa, M., Lücking, R., Hestmark, G., Garcia-Otalora, M., Rauhut, A., Büdel, B., Scheidegger, C., Timdal, E., Stenroos, S., Brodo, I., Perlmutter, G. B., Ertz, D., Diederich, P., Lendemer, J. C., Tripp, E., Yahr, R., May, P., Gueidan, C., Spatafora, J. W., Schoch, C., Arnold, A. E., Robertson, C., and Lutzoni, F., 2006. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 98, 1088–1103.Google Scholar
  54. Nash, T. H., 1996a. Introduction. In Nash III, T. H. (ed.), Lichen Biology. Cambridge, Cambridge University Press, pp. 1–7.Google Scholar
  55. Nash, T. H., 1996b. Photosynthesis, respiration, productivity and growth. In Nash III , T. H. (ed.), Lichen Biology. Cambridge, Cambridge University Press, pp. 88–120.Google Scholar
  56. Onofri, S., Barreca, D., Rabbow, E., de Vera, J. P., Selbmann, L., and Zucconi, L., 2007. Antarctic rock fungi in space and mars simulated conditions. Geophysical Research Abstracts, 9, 9782–9783.Google Scholar
  57. Palmer, F. E., Emery, D. R., Stemmler, J., and Staley, J. T., 1987. Survival and growth of microcolonial rock fungi as affected by temperature and humidity. New Phytologist, 107, 155–162.Google Scholar
  58. Rundel, P. W., 1988. Water relations. In Galun, M. (ed.), Handbook of Lichenology, Boca Raton: CRC, Vol. 2, 17–36.Google Scholar
  59. Schoch, C. L., Shoemaker, R. A., Seifert, K. A., Hambleton, S., Spatafora, J. W., and Crous, P. W., 2006. A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia, 98, 1041–1052.Google Scholar
  60. Schöller, H., 1997. Ökologie und Verbreitung. In Schöller, H. (ed.), Flechten: Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung. Frankfurt am Main: Senckenbergische Naturforschende Gesellschaft, pp. 83–109.Google Scholar
  61. Schöller, H., and Mollenhauer, D., 1997. Flechtensymbiose und Flechtenthallus. In Schöller, H. (ed.), Flechten: Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung. Frankfurt am Main: Senckenbergische Naturforschende Gesellschaft, pp. 15–47.Google Scholar
  62. Selbmann, L., de Hoog, G. S., Mazzaglia, A., Friedmann, E. I., and Onofri, S., 2005. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in Mycology, 51, 1–32.Google Scholar
  63. Sigler, L., Tsuneda, A., and Carmichael, J. W., 1981. Phaeotheca and Phaeosclera, two new genera of dematiaceous hyphomycetes and a redescription of Sarcinomyces lindner. Mycotaxon, 12, 449–467.Google Scholar
  64. Sterflinger, K., De Baere, R., de Hoog, G. S., De Wachter, R., Krumbein, W. E., and Haase, G., 1997. Coniosporium Perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the sanctuary of Delos (Cyclades, Greece). Antonie van Leuwenhoek, 72, 349–363.Google Scholar
  65. Taylor-George, S., Palmer, F., Staley, J. T., Borns, D. J., Curtiss, B., and Adams, J. B., 1983. Fungi and bacteria involved in desert varnish formation. Microbial Ecology, 9, 227–245.Google Scholar
  66. Tretiach, M., and Geletti, A., 1997. CO2 exchange of the endolithic lichen Verrucaria baldensis from karst habitats in Northern Italy. Oecologia, 111, 515–522.Google Scholar
  67. Tretiach, M., and Pecchiari, M., 1995. Gas exchange rates and chlorophyll content of epi- and endolithic lichens from the Trieste Karst (NE Italy). New Photologist, 130, 585–592.Google Scholar
  68. van den Hoek, C., Jahns, H. M., and Mann, D. G., 1993. Algen. 3. Auflage. Stuttgart: Thieme.Google Scholar
  69. Warscheid, T., Oelting, M., and Krumbein, W. E., 1991. Physicochemical aspects of biodeterioration processes on rocks with special regard to organic pollutants. International Biodeterioration, 28, 37–48.Google Scholar
  70. Weber, B., and Büdel, B., 2001. Mapping and analysis of distribution patterns of lichens on rural medieval churches in North-Eastern Germany. Lichenologist, 33(3), 231–248.Google Scholar
  71. Weber, B., Scherr, C., Reichenberger, H., and Büdel, B., 2007. Fast reactivation by high air humidity and photosynthetic performance of alpine lichens growing endolithically in limestone. Arctic, Antarctic and Alpine Research, 39(2), 309–317.Google Scholar
  72. Weber, B., Olehowski, C., Knerr, T., Hill, J., Deutschewitz, K., Wessels, D. C. J., Eitel, B., and Büdel, B., 2008. A new approach for mapping of biological soil crusts in semidesert areas with hyperspectral imagery. Remote Sensing of Environment, 112, 2187–2201.Google Scholar
  73. Wessels, D. C. J., and Schoeman, P., 1988. Mechanisms and rate of weathering of Clarens sandstone by an endolithic lichen. South African Journal of Science, 84, 274–277.Google Scholar
  74. Winkler, J. B., and Kappen, L., 1997. Photosynthetic capacity of endolithic lichens from South Africa. Bibliotheca Lichenologica, 67, 165–181.Google Scholar
  75. Wirth, V., 1995. Die Flechten Baden-Württembergs. Teil 1–2. Stuttgart: Eugen Ulmer GmbH.Google Scholar
  76. Wollenzien, U., de Hoog, G. S., Krumbein, W. E., and Uijthof, J. M. J., 1997. Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean basin. Antonie van Leuwenhoek, 71, 281–288.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bettina Weber
    • 1
  • Burkhard Büdel
    • 1
  1. 1.Plant Ecology and Systematics Department of BiologyUniversity of KaiserslauternKaiserslauternGermany