Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Alexander V. Altenbach
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_93


Forams (for short)


Foraminifera (from ancient Greek “hole bearers”, refers to the pores that early observers recognized in the calcitic tests) are amoeboid, eukaryotic protists with a large network of very thin cytoplasm extrusions (reticulopodia). Most species produce a genetically fixed shell (test), made of organic matter, agglutinated particles, calcite, aragonite, high-magnesium calcite, or opaline silica. The tests may be either simple bowls or tubes, or branched, coiled, substructured, and ornamented in diverse complexity. Several thousand species are found living in modern oceans, and this number still increases. Several times more extinct species are recovered from the fossil record. Foraminifera are considered an order (sometimes a class) in paleontology, subdivided by the structure and composition of modern and fossil tests. They are ranked among the “Granuloreticulosa” in biology, characterized by (1) their branching and anastomosing networks of...


Benthic Foraminifera Planktonic Foraminifera Modern Ocean Planktic Foraminifera Ocean Realm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., Mccourt, R. M., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., and Taylor, M. F. J. R., 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. The Journal of Eukaryotic Microbiology, 52, 399–451.CrossRefGoogle Scholar
  2. Altenbach, A. V., and Struck, U., 2001. On the coherence of organic carbon flux and benthic foraminiferal biomass. Journal of Foraminiferal Research, 31, 79–85.CrossRefGoogle Scholar
  3. Anderson, O. R., and Lee, J. J., 1991. Symbiosis in foraminifera. In Lee, J. J., and Anderson, O. R. (eds.), Biology of Foraminifera. London: Academic Press, pp. 157–220.Google Scholar
  4. Archibald, J. M., and Keeling, P. J., 2004. Actin and ubiquitin protein sequences support a Cercocoan/Foraminiferan ancestry for the Plasmodiophorid plant pathogenes. Journal of Eukaryotic Microbiology, 51, 113–118.CrossRefGoogle Scholar
  5. Benton, M. J., 1993. The Fossil Record 2. London: Chapmann & Hall.Google Scholar
  6. Bernhard, J. M., 2003. Potential symbionts in bathyal foraminifera. Science, 299, 861.CrossRefGoogle Scholar
  7. Bernhard, J. M., and Bowser, S. S., 2008. Peroxisome proliferation in foraminifera inhabiting the chemocline: An adaptation to reactive oxygen species exposure? Journal of Eukaryotic Microbiology, 55, 135–144.CrossRefGoogle Scholar
  8. Bernhard, J. M., Visscher, P. T., and Bowser, S. S., 2003. Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnology Oceanography, 48, 813–828.CrossRefGoogle Scholar
  9. Bernhard, J. M., Habura, A., and Bowser, S. S., 2006. An endobiont-bearing allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. Journal of Geophysical Research, 111, G03002, DOI:10.1029/2005JG000158.CrossRefGoogle Scholar
  10. Bertram, M. A., and Cowen, J. P., 1997. Morphological and compositional evidence for biotic precipitation of marine barite. Journal of Marine Research, 55, 577–593.CrossRefGoogle Scholar
  11. Dong, L., Xiao, S., Shen, B., and Zhou, C., 2008. Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society U. K., 165, 367–378.CrossRefGoogle Scholar
  12. Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. J. R., 2004. The evolution of modern eukaryotic phytoplankton. Science, 305, 354–360.CrossRefGoogle Scholar
  13. Gooday, A. J., and Nott, A. J., 1982. Intracellular barite crystals in two Xenophyophores, Aschemonella ramuliformis and Galatheammina sp. (Protozoa, Rhiziopoda) with comments on the taxonomy of A. ramuliformis. Journal of the Marine Biological Association U. K., 62, 595–605.CrossRefGoogle Scholar
  14. Gruber, N., and Galloway, J. N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293–296.CrossRefGoogle Scholar
  15. Grzymski, J., Schofield, O. M., Falkowski, P. G., and Bernhard, J. M., 2002. The function of plastids in the deepsea benthic foraminifer, Nonionella stella. Limnology and Oceanography, 47, 1569–1580.CrossRefGoogle Scholar
  16. Heinz, P., Geslin, E., and Hemleben, C., 2005. Laboratory observations of benthic foraminiferal cysts. Marine Biology Research, 1, 149–159.CrossRefGoogle Scholar
  17. Hemleben, C., Spindler, M., and Anderson, O. R., 1989. Modern Planktonic Foraminifera. New York: Springer.CrossRefGoogle Scholar
  18. Høgslund, S., Revsbech, N., Cedhagen, T., Nielsen, L., and Gallardo, V., 2008. Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. Journal of Experimental Marine Biology and Ecology, 359, 85–91.CrossRefGoogle Scholar
  19. Langer, M. R., 2008. Assessing the contribution of foraminiferan protists to global ocean carbonate production. Journal of Eukaryotic Microbiology, 55, 163–169.CrossRefGoogle Scholar
  20. Laureillard, J., Mejanelle, L., and Sibuet, M., 2004. Use of lipids to study the trophic ecology of deep-sea xenophyophores. Marine Ecology Progress Series, 270, 129–140.CrossRefGoogle Scholar
  21. Leckie, R. M., 1989. A paleoceanographic model for the early evolution history of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 73, 107–138.CrossRefGoogle Scholar
  22. Lee, J. J., 2006. Algal symbiosis in larger Foraminifera. Symbiosis, 42, 63–75.Google Scholar
  23. Lemche, H., Hansen, B., Madsen, E. J., Tendal, O. S., and Wolf, T., 1976. Hadal life as analyzed from photographs. Videnskabelige meddelelser fra Dansk naturhistorisk forening, 139, 263–336.Google Scholar
  24. Linke, P., 1992. Metabolic adaptions of deep-sea benthic foraminifera to seasonally varying food input. Marine Ecology Progress Series, 81, 51–63.CrossRefGoogle Scholar
  25. Loeblich, A. R., and Tappan, H., 1988. Foraminiferal Genera and their Classification. New York: Van Nostrand Reinhold. [year of publication often cited erroneously as 1987; see Loeblich, A. R., and Tappan, H., 1989. Publication date of foraminiferal genera and their classification. Journal of Paleontology, 63, 253.]Google Scholar
  26. Martin, R. E., Quigg, A., and Podkovyrov, V., 2008. Marine Biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeography Palaeoclimatology Palaeoecology, 258, 277–291.CrossRefGoogle Scholar
  27. Moodley, L., Middelburg, J. J., Boschker, H. T. S., Duineveld, G. C. A., Pel, R., Herman, P. M. J., and Heip, C. H. R., 2002. Bacteria and foraminifera: key players in a short-term deep-sea response to phytodetritus. Marine Ecology Progress Series, 236, 23–29.CrossRefGoogle Scholar
  28. Moya, A., Pereto, J., Gil, R., and Latorre, A., 2008. Learning how to live together: genomic insight into prokaryote-animal symbiosis. Nature Reviews Genetics, 9, 218–229.CrossRefGoogle Scholar
  29. Murray, J. W., 2006. Ecology and Applications of Benthic Foraminifera. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Norris, R. D., 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology, 22, 461–480.Google Scholar
  31. Nozawa, F., Kitazato, H., Tsuchiya, M., and Gooday, A. J., 2006. ‘Live’ benthic foraminifera at a abyssal site in the equatorial Pacific nodule province: abundance, diversity and taxonomic composition. Deep-Sea Research I, 53, 1406–1422.CrossRefGoogle Scholar
  32. Nützel, A., Lehnert, O., and Fryda, J., 2006. Origin of planktotrophy - evidence from early molluscs. Evolution and Development, 8, 325–330.CrossRefGoogle Scholar
  33. Pascal, P., Dupuy, C., Mallet, C., Richard, P., and Niqul, N., 2008. Bacterivory in benthic organisms in sediment: quantification using 15N-enriched bacteria. Journal of Experimental Biology and Ecology, 355, 18–26.CrossRefGoogle Scholar
  34. Pawlowski, J., and Burki, F., 2009. Untangling the phylogeny of amoeboid protists. Journal of Eukaryotic Microbiology, 56(1), 16–25.CrossRefGoogle Scholar
  35. Riemann, F., 1985. Eisen und Mangan in pazifischen Tiefsee-Rhizopoden und Beziehungen zur Manganknollen-Genese. Internationale Revue der gesamten Hydrobiologie, 70(1), 165–172.CrossRefGoogle Scholar
  36. Riemann, F., and Helmke, E., 2002. Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme sharing concept. Marine Ecology, 23, 93–113.CrossRefGoogle Scholar
  37. Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S. M., Op den Camp, H. J. M., Derksen, J. W. M., Pina-Ochoa, E., Eriksson, S. P., Nielsen, L. P., Revsbech, N. P., Cedhagen, T., and van der Zwaan, G. J., 2006. Evidence for complete denitrification in a benthic foraminifer. Nature, 443, 93–96.CrossRefGoogle Scholar
  38. Sarmiento, J. L., Dunne, J., Gnanadesikan, A., Key, R. M., Matsumoto, K., and Slater, R., 2002. A new estimate of the CaCO3 to organic carbon export ratio. Global Biogeochemical Cycles, 16(4), no 1107. doi:10.1029/2002/GB001919.Google Scholar
  39. Schiebel, R., 2002. Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochemical Cycles, 16(4), no 1065, doi:10.1029/2001GB001459.CrossRefGoogle Scholar
  40. Sen Gupta, B., 1999. Modern Foraminifera. Dordrecht: Kluwer Academic Press.Google Scholar
  41. Witte, U., Wenzhöfer, F., Sommer, S., Boetius, A., Heinz, P. N. A., Sand, M., Cremer, A., Abraham, W. B. J. B., and Olaf, P., 2003. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature, 424, 763–766.CrossRefGoogle Scholar
  42. Zaric, S., Schulz, M., and Mulitza, S., 2006. Global prediction of planktonic foraminiferal fluxes from hydrographic and productivity data. Biogeosciences, 3, 187–207.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alexander V. Altenbach
    • 1
  1. 1.Ludwig-Maximilians-University MunichMunichGermany