Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Bettina Weber
  • Burkhard Büdel
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_80


Endoliths: Organisms, growing in the interior of rocks. They are cryptoendoliths when growing within structural cavities, chasmoendoliths when inhabiting fissures and cracks of the rock, and euendoliths when actively penetrating rocky substrates (Golubic et al., 1981).

Endolithically growing organisms

The endolithic growth form occurs in a variety of organism groups comprising cyanobacteria, red and green algae , fungi , lichens and nonphotoautotrophic bacteria . Most endolithic habitats (if not all) accommodate several of these organism groups and are accompanied by a large variety of nonphotoautotrophic bacteria (McNamara et al., 2006).


Polar climate

Probably the best known endolithic communities, first described by Friedmann and Ocampo in 1976, are those of the Beacon Sandstone in the dry valleys of southern Victoria Land, Antarctica . In his studies, Friedmann (1977, 1978) specified cryptoendolithic lichens forming multicolored zones several millimeters...


Extracellular Polymeric Substance Rock Surface Cold Desert Synechococcus Elongatus Endolithic Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bachmann, E., 1890. Die Beziehungen der Kalkflechten zu ihrem Substrat. Berichte der Deutschen Botanischen Gesellschaft, 8, 141–145.Google Scholar
  2. Bachmann, E., 1892. Der Thallus der Kalkflechten. Berichte der Deutschen Botanischen Gesellschaft, 10, 30–37.Google Scholar
  3. Bachmann, E., 1904. Die Beziehungen der Kieselflechten zu ihrem Substrat. Berichte der Deutschen Botanischen Gesellschaft, 22, 101–104.Google Scholar
  4. Bachmann, E., 1911. Die Beziehungen der Kieselflechten zu ihrer Unterlage. II. Granat und Quarz. Berichte der Deutschen Botanischen Gesellschaft, 29, 261–273.Google Scholar
  5. Bachmann, E., 1916. Kalklösende Algen. Berichte der Deutschen Botanischen Gesellschaft, 33, 45–57.Google Scholar
  6. Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A., and Little, B., 2001. Mineralogical biosignatures and the search for life on Mars. Astrobiology, 1(4), 447–465.CrossRefGoogle Scholar
  7. Bell, R. A., 1993. Cryptoendolithic algae of hot semiarid lands and deserts. Journal of Phycology, 29, 133–139.CrossRefGoogle Scholar
  8. Bell, R. A., Athey, P. V., and Sommerfeld, M. R., 1986. Cryptoendolithic algal communities of the Colorado Plateau. Journal of Phycology, 22, 429–435.CrossRefGoogle Scholar
  9. Bonani, G., Friedmann, E. I., Ocampo-Friedmann, R., Mckay, C., and Woelfli, W., 1988. Preliminary report on radiocarbon dating of cryptoendolithic microorganisms. Berichte zur Polarforschung, 58, 2–3.Google Scholar
  10. Broady, P. A., 1981. The ecology of chasmolithic algae at coastal locations of Antarctica. Phycologia, 20(3), 259–272.CrossRefGoogle Scholar
  11. Büdel, B., 1999. Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. European Journal of Phycology, 34, 361–370.Google Scholar
  12. Büdel, B., and Wessels, D. C. J., 1991. Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algological Studies, 64, 385–398.Google Scholar
  13. Büdel, B., Mollenhauer, D., and Mollenhauer, R., 1991. Synechococcus elongatus – cryptoendolithic growth within bleached sandstone from creeks in the midland area Spessart (Germany). Algological Studies, 64, 357–360.Google Scholar
  14. Büdel, B., Weber, B., Kühl, M., Pfanz, H., Sültemeyer, D., and Wessels, D., 2004. Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology, 2, 261–268.CrossRefGoogle Scholar
  15. Büdel, B., Bendix, J., Bicker, F. T., and Green, T. G. A., 2008. Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. Journal of Phycology, 44(6), 1415–1424.CrossRefGoogle Scholar
  16. Bungartz, F., Gravie, L. A. J., and Nash, T. H. III, 2004. Anatomy of the endolithic sonoran desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. The Lichenologist, 36(1): 55–73.CrossRefGoogle Scholar
  17. Danin, A., and Garty, J., 1983. Distribution of cyanobacteria and lichens on hillsides of the Negev highlands and their impact on biogenic weathering. Zeitschrift fuer Geomorphologie, Neue Folge, 27(4), 423–444.Google Scholar
  18. Danin, A., Gerson, R., and Garty, J., 1983. Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for Eolian contribution to Terra Rossa Soil. Soil Science, 136(4), 213–217.CrossRefGoogle Scholar
  19. Degelius, G., 1962. Über Verwitterung von Kalk- und Dolomitgestein durch Algen und Flechten. In Hedvall, J. A. (ed.), Chemie im Dienst der Archäologie Bautechnik Denkmalpflege. Lund: Hakam Ohlssons, pp. 156–164.Google Scholar
  20. De Los Rios, A., Wierzchos, J., Sancho, L. G., and Ascaso, C., 2003. Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environmental Microbiology, 5(4), 231–237.CrossRefGoogle Scholar
  21. De Los Rios, A., Sancho, L. G., Grube, M., Wierzchos, J., and Ascaso, C., 2005. Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytotogist, 165, 181–190.CrossRefGoogle Scholar
  22. De Los Rios, A., Grube, M., Sancho, L. G., and Ascaso, C., 2007. Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiology Ecology, 59, 386–395.CrossRefGoogle Scholar
  23. Diels, L., 1914. Die Algenvegetation der Südtiroler Dolomitriffe. Ein Beitrag zur Ökologie der Lithophyten. Berichte der Deutschen Botanischen Gesellschaft, 32, 502–526.Google Scholar
  24. Friedmann, E. I., 1977. Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarctic Journal of the United States, 12(4), 26–30.Google Scholar
  25. Friedmann, E. I., 1978. Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarctic Journal of the United States, 13(4), 162–163.Google Scholar
  26. Friedmann, E. I., 1980. Endolithic microbial life in hot and cold deserts. Origins of Life, 10, 223–235.CrossRefGoogle Scholar
  27. Friedmann, E. I., 1982. Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.CrossRefGoogle Scholar
  28. Friedmann, E. I., and Ocampo, R., 1976. Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science, 193, 1247–1249.CrossRefGoogle Scholar
  29. Friedmann, E. I., and Ocampo-Friedmann, R., 1984. Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In Klug, M. J., and Reddy, C. A. (eds.), Current Perspectives in Microbial Ecology. Washington, DC: ATM, pp. 177–185.Google Scholar
  30. Friedmann, E. I., and Weed, R., 1987. Microbial trace-fossil formation, biogeneous, and abiotic weathering in the Antarctic cold desert. Science, 236, 703–705.CrossRefGoogle Scholar
  31. Friedmann, E. I., Lipkin, Y., and Ocampo-Paus, R., 1967. Desert algae of the Negev (Israel). Phycologia, 6, 185–200.CrossRefGoogle Scholar
  32. Friedmann, E. I., Garty, J., and Kappen, L., 1980. Fertile stages of cryptoendolithic lichens in the dry valleys of Southern Victoria land. Antarctic Journal of the United States, 15, 166–167.Google Scholar
  33. Friedmann, E. I., Friedmann, R. O., and McKay, C. P., 1981. Adaptations of cryptoendolithic lichens in the Antarctic desert. In Jouventin, P., Massé, L., and Tréhen, P. (eds.), Colloque sur les Écosystèmes Subantarctiques. Paimpont Paris No. 51: Comité National Francais des Recherches Antarctiques, pp. 65–69.Google Scholar
  34. Friedmann, E. I., Hua, M., and Ocampo-Friedmann, R., 1988. Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung, 58(2/3), 251–259.Google Scholar
  35. Gaylarde, P. M., Jungblut, A.-D., Gaylarde, C. C., and Neilan, B. A., 2006. Endolithic phototrophs from an active Geothermal region in New Zealand. Geomicrobiology Journal, 23, 579–587.CrossRefGoogle Scholar
  36. Gehrmann, C. K., Krumbein, W. E., and Petersen, K., 1992. Endolithic lichens and the corrosion of carbonate rocks – a study of biopitting. International Journal of Mycology and Lichenology, 5(1–2), 37–48.Google Scholar
  37. Golubic, S., 1983. Stromatolites, fossil and recent: a case history. In Westbroek, P., and de Jong, E. W. (eds.), Biomineralization and Biological Metal Accumulation. Dordrecht, the Netherlands: D. Reidel, pp. 313–326.CrossRefGoogle Scholar
  38. Golubic, S., and Schneider, J., 2003. Microbial endoliths as internal biofilms. In Krumbein, W. E., Dornieden, T., and Volkmann, M. (eds.), Fossil and Recent Biofilms. Dordrecht, the Netherlands: Kluwer, pp. 249–263.Google Scholar
  39. Golubic, S., Friedmann, I., and Schneider, J., 1981. The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology, 51(2), 475–478.Google Scholar
  40. Hoppert, M., Flies, C., Pohl, W., Günzl, B., and Schneider, J., 2004. Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environmental Geology, 46, 421–428.CrossRefGoogle Scholar
  41. Hughes, K., and Lawley, B., 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environmental Microbiology, 5(7), 555–565.CrossRefGoogle Scholar
  42. Kamierczak, J., and Golubic, S., 1976. Oldest organic remains of boring algae from Polish Upper Silurian. Nature, 261, 404–406.CrossRefGoogle Scholar
  43. Knoll, A. H., Golubic, S., Green, J., and Swett, K., 1986. Organically preserved microbial endoliths from the late Proterozoic of East Greenland. Nature, 321, 856–857.CrossRefGoogle Scholar
  44. Le Campion-Alsumard, T., 1979. Les Cyanophycées endolithes marines. Systématique, ultrastructure, écologie et biodestruction. Oceanologica Acta, 2(2), 143–156.Google Scholar
  45. Matthes, U., Turner, S. J., and Larson, D. W., 2001. Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. International Journal of Plant Science, 162(2), 263–270.CrossRefGoogle Scholar
  46. Matthes-Sears, U., Gerrath, J. A., and Larson, D. W., 1997. Abundance, biomass, and productivity of endolithic and epilithic lower plants on the temperate-zone cliffs of the Niagara Escarpment, Canada. International Journal of Plant Science, 158(4), 451–460.CrossRefGoogle Scholar
  47. McNamara, C. J., Perry, T. D., Bearce, K. A., Hernandez-Duque, G., and Mitchell, R., 2006. Epilithic and endolithic bacterial communities in limestone from a Maya archeological site. Microbial Ecology, 51, 51–64.CrossRefGoogle Scholar
  48. Norris, T. B., and Castenholz, R. W., 2006. Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park. FEMS Microbiology Ecology, 57(3), 470–483.CrossRefGoogle Scholar
  49. Omelon, C. R., Pollard, W. H., and Ferris, F. G., 2006. Environmental controls on microbial colonization of high arctic cryptoendolithic habitats. Polar Biology, 30, 19–29.CrossRefGoogle Scholar
  50. Papineau, D., Walker, J. J., Mojzsis, S. J., and Pace, N. R., 2005. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Applied and Environmental Microbiology, 71(8), 4822–4832.CrossRefGoogle Scholar
  51. Pohl, W., and Schneider, J., 2002. Impact of endolithic biofilms on carbonate rock surfaces. In Siegesmund, S., Weiss, T., and Vollbrecht, A. (eds.), Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies. London: Geological Society, pp. 177–194.Google Scholar
  52. Schneider, J., 1976. Biological and inorganic factors in the destruction of limestone coasts. Contributions to Sedimentology, 6, 1–112.Google Scholar
  53. Sollas, W. J., 1880. On the activity of a lichen on limestone. Report of the British Association for the Advancement of Science, p. 586.Google Scholar
  54. Tretiach, M., 1995. Ecophysiology of calcicolous endolithic lichens: progress and problems. Giornale Botanico Italiano, 129(1), 159–184.CrossRefGoogle Scholar
  55. Walker, J. J., Spear, J. R., and Pace, N. R., 2005. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature, 434, 1011–1014.CrossRefGoogle Scholar
  56. Weber, B., Wessels, D. C. J., and Büdel, B., 1996. Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algological Studies, 83, 565–579.Google Scholar
  57. Weber, B., Scherr, C., Reichenberger, H., and Büdel, B., 2007. Fast reactivation by high air humidity and photosynthetic performance of alpine lichens growing endolithically in limestone. Arctic, Antarctic and Alpine Research, 39(2), 309–317.CrossRefGoogle Scholar
  58. Wessels, D. C. J., and Schoeman, P., 1988. Mechanisms and rate of weathering of Clarens sandstone by an endolithic lichen. South African Journal of Science, 84, 274–277.Google Scholar
  59. Wierzchos, J., Sancho, L. G., and Ascaso, C., 2005. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection. Environmental Microbiology, 7(4), 566–575.CrossRefGoogle Scholar
  60. Wierzchos, J., Ascaso, C., and McKay, C. P., 2006. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 6(3), 1–8.CrossRefGoogle Scholar
  61. Zhang, Y., and Golubic, S., 1987. Endolithic microfossils (cyanophyta) from early proterozoic stromatolites, Hebei, China. Acta Micropaleontologica Sinica, 4, 1–12.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bettina Weber
    • 1
  • Burkhard Büdel
    • 1
  1. 1.Plant Ecology and Systematics Department of BiologyUniversity of KaiserslauternKaiserslauternGermany