Skip to main content

Algae (Eukaryotic)

  • Reference work entry

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Algae (eukaryotic)

Eukaryotic algae are a collection of extremely diverse, nonrelated organisms that perform photosynthesis in plastids, permanent organelles of green, brown, or bluish colors derived from endosymbiosis. In contrast to plants, algae do not form embryos.

Algae is a term of convenience and refers to a collection of highly diverse organisms that undertake photosynthesis and/or possess plastids (Keeling, 2004). Many authors even include the prokaryotic cyanobacteria into the algae, because they exhibit a life-style rather similar to their eukaryotic counterparts and often share the same habitat with eukaryotic algae. Cyanobacteria form the origin of plastids (for reviews see McFadden, 2001; Keeling, 2004; Palmer, 2003). Plastids are the organelles of plants and eukaryotic algae that harbor photosynthesis and synthesize many chemical compounds also important for other biochemical pathways (e.g., aromatic amino acids, heme, isoprenoids, and fatty acids); nonphotosynthetic...

Keywords

  • Green Alga
  • Fossil Record
  • Accessory Pigment
  • Secondary Plastid
  • Algal Lineage

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Adey, W. H., 1998. Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. Journal of Phycology, 34, 393–406.

    CrossRef  Google Scholar 

  • Andersen, R. A., 2004. Biology and systematics of heterokont and haptophyte algae. American Journal of Botany, 91, 1508–1522.

    CrossRef  Google Scholar 

  • Apprill, A. M., and Gates, R. D., 2007. Recognizing diversity in coral symbiotic dinoflagellate communities. Molecular Ecology, 16, 1127–1134.

    CrossRef  Google Scholar 

  • Arp, G., Bissett, A., Brinkmann, N., Cousin, S., De Beer, D., Friedl, T., Mohr, K. I., Neu, T. R., Reimer, A., Shiraishi, F., Stackebrandt, E., and Zippel, B., 2010. Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. Geological Society, London, Special Publications 2010, 336, 83–118.

    CrossRef  Google Scholar 

  • Baker, A. C., 2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of symbiodinium. Annual Review of Ecology, Evolution and Systematics, 34, 661–689.

    CrossRef  Google Scholar 

  • Betts-Piper, A. M., Zeeb, B. A., and Smol, J. P., 2004. Distribution and autecology of chrysophyte cysts from high Arctic Svalbard lakes: preliminary evidence of recent environmental change. Journal of Paleolimnology, 31, 467–481.

    CrossRef  Google Scholar 

  • Bhattacharya, D., and Schmidt, H. A., 1997. Division glaucocystophyta. In Bhattacharya, D. (ed.), Origin of Algae and Their Plastids, Wien: Springer-Verlag, pp. 139–148.

    CrossRef  Google Scholar 

  • Bilan, M. I., and Usov, A. I., 2001. Polysaccharides of calcareous algae and their effect on the calcification process. Russian Journal of Bioorganic Chemistry, 27, 2–16.

    CrossRef  Google Scholar 

  • Borowitzka, M. A., 1977. Algal calcification. Oceanography and Marine Biology: An Annual Review, 15, 189–223.

    Google Scholar 

  • Bremer, K., 1985. Summary of green plant phylogeny and classification. Cladistics, 1, 369–385.

    CrossRef  Google Scholar 

  • Butterfield, N. J., 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386–404.

    CrossRef  Google Scholar 

  • Chisholm, J. R. M., 2003. Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography, 48, 1376–1387.

    CrossRef  Google Scholar 

  • Ciugulea, I., and Triemer, R. E., 2010. A color atlas of photosynthetic Euglenoids. East Lansing: Michigan State University Press.

    Google Scholar 

  • Daugbjerg, N., and Henriksen, P., 2001. Pigment composition and rbcL sequence data from the silicoflagellate Dictyocha speculum: a heterokont alga with pigments similar to some haptophytes. Journal of Phycology, 37, 1110–1120.

    CrossRef  Google Scholar 

  • Delwiche, C. F., 2007. The origin and evolution of dinoflagellates. In Falkowski, P. G., and Knoll, A. H., (eds.), Evolution of Primary Producers of the Sea, New York: Academic, pp. 191–205.

    CrossRef  Google Scholar 

  • DeVrind-deJong, E. W., van Emburg, P. R., and deVrind, J. P. M., 1994. Mechanisms of calcification: Emiliania huxleyi as a model system. In Green, J. C., and Leadbeater, B. S. C. (eds.), The Haptophyte Algae, Oxford: Clarendon, pp. 149–166.

    Google Scholar 

  • Duff, K. E., Zeeb, B. A., and Smol, J. P., 1995. Atlas of Chrysophycean Cysts. Dordrecht: Kluwer Academic, 189 pp.

    CrossRef  Google Scholar 

  • Dullo, W. C., Moussavian, E., and Brachert, T., 1990. The foralgal crust facies of the deeper fore reefs in the Red Sea. Geobios, 23, 261–281.

    CrossRef  Google Scholar 

  • Edvardsen, B., Eikkrem, W., Green, J. C., Andersen, R. A., van der Staay, S. Y. M., and Medlin, L. K., 2000. Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia, 39, 19–35.

    CrossRef  Google Scholar 

  • Elloranta, P., 1995. Biogeography of chrysophytes in Finnish lakes. In Sandgren, C. D., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae. Ecology, Phylogeny and Development, Cambridge: Cambridge University Press, pp. 214–231.

    CrossRef  Google Scholar 

  • Fawley, M. W., Yun, Y., and Qin, M., 2000. Phylogenetic analyses of 18S rDNA sequences reveal a new coccoid lineage of the Prasinophyceae (Chlorophyta). Journal of Phycology, 36, 387–393.

    CrossRef  Google Scholar 

  • Fensome, R. A., MacRae, R. A., Moldowan, J. M., Taylor, F. J. R., and Williams, G. L., 2003. The early Mesozoic radiation of dinoflagellates. Paleobiology, 22, 329–338.

    Google Scholar 

  • Foster, M. S., 2001. Rhodoliths: between rocks and soft places. Journal of Phycology, 37, 659–667.

    CrossRef  Google Scholar 

  • Foth, B. J., and McFadden, G. I., 2003. The apicoplast: a plastid in Plasmodium falciparum and other apicomplexan parasites. International Review of Cytology, 224, 57–110.

    CrossRef  Google Scholar 

  • Freytet, P., and Verrecchia, E. P., 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology, 45, 535–563.

    CrossRef  Google Scholar 

  • Friedl, T., 1997. The evolution of the green algae. Plant Systematics and Evolution, 11, 87–101.

    CrossRef  Google Scholar 

  • Glynn, P. W., Veron, J. E. N., and Wellington, G. M., 1996. Clipperton Atoll (eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeography. Coral Reefs, 15, 71–99.

    Google Scholar 

  • Gottschling, M., Keupp, H., Plötner, J., Knop, R., Willems, H., and Kirsch, M., 2005. Phylogeny of calcareous dinoXagellates as inferred from ITS and ribosomal sequence data. Molecular Phylogenetics and Evolution, 36, 444–455.

    CrossRef  Google Scholar 

  • Gottschling, M., Renner, S. S., Meier, K. J. S., Willems, H., and Keupp, H., 2008. Timing deep divergence events in calcareous dinoflagellates. Journal of Phycology, 44, 429–438.

    CrossRef  Google Scholar 

  • Graham L. E., Graham J. M., and Wilcox, L. W., 2009. Algae, 2nd edn. San Francisco: Pearson Benjamin Cummings.

    Google Scholar 

  • Hackett, J. D., Anderson, D. M., Erdner, D. L., and Bhattacharya, D., 2004. Dinoflagellates: a remarkable evolutionary experiment. American Journal of Botany, 91, 1523–1534.

    CrossRef  Google Scholar 

  • Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rümmele, S. E., and Bhattacharya, D., 2007. Phylogenetic analysis supports the monophyly of cryophytes and haptophytes and the association of Rhizaria with chromalveolates. Molecular Biology and Evolution, 24, 1702–1713.

    CrossRef  Google Scholar 

  • Inouye, I., and Kawachi, M., 1994. The haptonema. In Green, J. C., and Leadbeater, B. S. C. (eds.), The Haptophyte Algae. Oxford: Clarendon, pp. 73–89.

    Google Scholar 

  • Ishida, K., Green, B. R., and Cavalier-Smith, T., 1999. Diversification of a chimaeric algal group, the chlorarachniophytes: Phylogeny of nuclear and nucleomorph small-subunit rRNA genes. Molecular Biology and Evolution, 16, 321–331.

    CrossRef  Google Scholar 

  • Janofske, D., 1992. Kalkiges Nannoplankton, insbesondere kalkige Dinoflagellaten-Zysten der alpinen Ober-Trias: Taxonomie, Biostratigraphie und Bedeutung für die Phylogenie der Peridiniales. Berliner Geowiss. Abh. (E), 4, 1–53.

    Google Scholar 

  • Karol, K. G., Mccourt, R. M., Cimino, M. T., and Delwiche, C. F., 2001. The closest living relatives of land plants. Science, 294, 2351–2353.

    CrossRef  Google Scholar 

  • Keats, D. W., Knight, M., and Pueschel, C., 1997. Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef. Journal of Experimental Marine Biology and Ecology, 213, 281–293.

    CrossRef  Google Scholar 

  • Keeling, P. J., 2004. Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91, 1481–1493.

    CrossRef  Google Scholar 

  • Keupp, H., 1991. Fossil calcareous dinoflagellate cysts. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Berlin: Springer, pp. 267–286.

    CrossRef  Google Scholar 

  • Kingsley, R. J., Van Gilder, R., LeGeros, R. Z., and Watabe, N., 2003. Multimineral calcareous deposits in the marine alga Acetabularia acetabulum (Chlorophyta; Dasycladaceae). Journal of Phycology, 39, 937–947.

    CrossRef  Google Scholar 

  • Kohring, R., 1993. Kalkdinoflagellaten aus dem Mittel- und Obereozän von Jütland (Dänemark) und dem Pariser Becken (Frankreich) im Vergleich mit anderen Tertiär-Vorkommen. Berliner Geowiss. Abh. (E), 6, 1–164.

    Google Scholar 

  • Kohring, R., Gottschling, M., and Keupp, H., 2005. Examples for character traits and palaeoecological significance of calcareous dinoflagellates. Paläontologische Zeitschrift, 79, 79–91.

    Google Scholar 

  • Le Gall, L., and Saunders, G. W., 2007. A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the Corallinophycidae subclassis nov. Molecular Phylogenetics and Evolution, 43, 1118–1130.

    CrossRef  Google Scholar 

  • Leadbeater, B. S. C., and Barker, D. A. N., 1995. Biomineralization and scale production in the Chrysophyta. In Sandgren, C. D. J., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge, UK: Cambridge University Press, pp. 141–164.

    CrossRef  Google Scholar 

  • Leedale, G. F., and Vickerman, K., 2000. Phylum Euglenozoa. In Lee, J. J., Leedale, G. F., and Bradbury P. (eds.), An Illustrated Guide to the Protozoa, 2nd edn. Lawrence: Society of Protozoologists, pp. 1135–1185.

    Google Scholar 

  • Letsch, M. R., Muller-Parker, G., Friedl, T., and Lewis, L. A., 2009. Elliptochloris marina sp. nov. (Trebouxiophyceae, Chlorophyta), symbiotic green alga of the temperate pacific sea anemones Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria). Journal of Phycology, 47, 1127–1135.

    CrossRef  Google Scholar 

  • Lewis, L. A., and McCourt, R. M., 2004. Green algae and the origin of land plants. American Journal of Botany, 91, 1535–1556.

    CrossRef  Google Scholar 

  • Littler, M. M., 1972. The crustose Corallinaceae. Oceanography and Marine Biology Annual Review, 10, 311–347.

    Google Scholar 

  • Malin, G., and Steinke, M., 2004. Dimethyl sulfide production: What is the contribution of the coccolithophores? In Thierstein, H. R., and Young, J. R. (eds.), Coccolithophores – From Molecular Processess to Global Impact. New York: Springer, pp. 127–164.

    Google Scholar 

  • Marshall, A. T., 1996. Calcification in hermatypic and ahermatypic corals. Science, 271, 637–639.

    CrossRef  Google Scholar 

  • Marin, B., and Melkonian, M., 2010. Molecular phylogeny and classification of the mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist, 161, 304–336.

    CrossRef  Google Scholar 

  • Martin, S., Castets, M. D., and Clavier, J., 2006. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquatic Botany, 85, 121–128.

    CrossRef  Google Scholar 

  • Martin, W., Rujan, T., Richly, E., Hansen, A., Ornelsen, S., Lins, T., Lesiter, D., Stoebe, B., Hasegawa, M., and Penny, D., 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences, USA, 99, 12246–12251.

    CrossRef  Google Scholar 

  • McCartney, K., and Wise, S. W. Jr., 1990. Cenozoic silicoflagellates and ebridians from ODP Leg 113: biostratigraphy and notes on morphologic variability. In Barker, P. F., and Kennett, J. P., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: (Ocean Drilling Program), Vol. 113, pp. 729–760.

    Google Scholar 

  • McCartney, K., and Harwood, D. M., 1992. Silicoflagellates from Leg 120 on the Kerguelen Plateau, southeast Indian Ocean. In Wise, S. W. Jr., Schlich, R., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX: Ocean Drilling Program, Vol. 120, pp. 811–831.

    Google Scholar 

  • McConnaughey, T., 1991. Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnology and Oceanography, 36, 619–628.

    CrossRef  Google Scholar 

  • McConnaughey, T. A., 1994. Calcification, photosynthesis, global carbon cycles. In Doumenge, E., and Allemand Toulemont, A. (eds.), Past and Present Biomneralization Processes Consideration about the Carbonate IUCNCOE Workshop Monaco, Nov 1993. Bulletin Oceanographique 13, 137–156.

    Google Scholar 

  • McFadden, G. I., 2001. Primary and secondary endosymbiosis and the origin of plastids. Journal of Phycology, 37, 951–959.

    CrossRef  Google Scholar 

  • Milanowski, R., Kosmala, S., Zakrys, B., and Kwiatowski, J., 2006. Phylogeny of photosynthetic euglenophytes based on combined chloroplast and cytoplasmic SSU rDNA sequence analysis. Journal of Phycology, 42, 721–730.

    CrossRef  Google Scholar 

  • Moestrup, Ø., 1995. Current status of chrysophyte splinter groups: synurophytes, pedinellids, silicoflagellates. In Sandgren, C. D., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae. Cambridge: Cambridge University Press, pp. 75–91.

    CrossRef  Google Scholar 

  • Moestrup, Ø., and O'Kelly, C. J., 2002. Class Silicoflagellata Lemmermann, 1901. In Lee, J. J., Leedale, G. F., and Bradbury, P. (eds.), An Illustrated Guide to the Protozoa, 2nd edn. Lawrence, Kansas, USA: Society of Protozoologists, vol. 2, pp. 775–776.

    Google Scholar 

  • Montresor, M., Zingone, A., and Sarno, D., 1998. Dinoflagellate cyst production at a coastal Mediterranean site. Journal of Plankton Research, 20, 2291–2312.

    CrossRef  Google Scholar 

  • Moore, R. B., 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 451, 959–963.

    CrossRef  Google Scholar 

  • Morrissey, J., 1980. Community structure and zonation of macroalgae and hermatyptic corals on a fringing reef flat of Magnetic Island (Queensland, Australia). Aquatic Botany, 8, 91–139.

    CrossRef  Google Scholar 

  • Nicholas, J. B., Knoll, A. H., and Swett, K., 1990. A bangiophyte red alga from the proterozoic of Arctic Canada. Science, 250, 104–107.

    CrossRef  Google Scholar 

  • Palmer, J., 2003. The symbiotic birth and spread of plastids: how many times and whodunit? Journal of Phycology, 39, 4–12.

    CrossRef  Google Scholar 

  • Paracer, S., and Ahmadjian, V., 2000. Symbiosis: An Introduction to Biological Associations. New York: Oxford University Press.

    Google Scholar 

  • Payri, C. E., Maritorena, S., Bizeau, M., and Rodiere, M., 2001. Photoacclimation in the tropical coralline alga Hydrolithon onkodes (Rhodophyta, Corallinacea) from a French Polynesian reef. Journal of Phycology, 37, 223–234.

    CrossRef  Google Scholar 

  • Persson, A., Godhe, A., and Karlson, B., 2000. Dinoflagellate cysts in recent sediments from the west coast of Sweden. Botanica Marina, 43, 69–79.

    CrossRef  Google Scholar 

  • Potin, P., Floch, J. Y., Augris, C., and Cabioch, J., 1990. Annual growth rate of the calcareous red algae Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia, 204/205, 263–267.

    CrossRef  Google Scholar 

  • Probert, I., Fresnel, J., Billard, C., Geisen, M., and Young, J. R., 2007. Light and electron microscope observations of Algirosphera robusta (Prymnesiophyceae). Journal of Phycology, 43, 319–332.

    CrossRef  Google Scholar 

  • Pröschold, T., and Leliaert, F., 2007. Systematics of the green algae: conflict of classic and modern approaches. In Brodie, J., and Lewis, J. (eds.), Unravelling the Algae: the Past, Present, and Future of the Algae Systematics. London: Taylor and Francis, pp. 123–153.

    Google Scholar 

  • Pueschel, C. M., Eichelberger, H. H., and Trick, H. N., 1992. Specialized calciferous cells in the marine alga Rhodogorgon carriebowensis and their implications for models of red algal calcification. Protoplasma, 166, 89–98.

    CrossRef  Google Scholar 

  • Riding, R., Cope, J. C. W., and Taylor, P. D., 1998. A coralline-like red alga from the lower Ordovician of Wales. Palaeontology, 41, 1069–1076.

    Google Scholar 

  • Rost, B., and Riebesell, U., 2004. Coccolithophore calcification and the biological pump: Response to environmental changes. In Thierstein, H. R., and Young, J. R. (eds.), Coccolithophores – From Molecular Processess to Global Impact. New York: Springer, pp. 99–126.

    Google Scholar 

  • Rott, E., Holzinger, A., Gesierich, D., Kofler, D., and Sanders, D., 2009. Cell morphology, ultrastructure, and calcification pattern of Oocardium stratum, a peculiar lotic desmid. Protoplasma, 10.1007/s00709-009-0050-y.

    Google Scholar 

  • Saunders, G. W., and Hammersand, M. H., 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. American Journal of Botany, 91, 1494–1507.

    CrossRef  Google Scholar 

  • Siver, P. A., and Wolfe, A. P., 2005. Eocene scaled chrysophytes with pronounced modern affinities. International Journal of Plant Sciences, 166, 533–536.

    CrossRef  Google Scholar 

  • Siver, P. A., 1995. The distribution of chrysophytes along environmental gradients: their use as bioindicators. In Sandgren, C. D., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae. Cambridge: Cambridge University Press, pp. 232–268.

    CrossRef  Google Scholar 

  • Sluiman, H. J., 1985. A cladistic evaluation of the lower and higher green plants (Viridiplantae). Plant Systematics and Evolution, 149, 217–232.

    CrossRef  Google Scholar 

  • Smol, J. P., 1995. Applications of chrysophytes to problems in paleoecology. In Sangren, C. D., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge: Cambridge University Press. pp. 303–329.

    CrossRef  Google Scholar 

  • Stanley, S. M., Ries, J. B., and Hardie, L. A., 2010. Increased production of calcite and slower growth for the major sediment-producing alga Halimeda as the Mg/Ca ratio of seawater is lowered to a “Calcite Sea” level. Journal of Sedimentary Research, 80, 6–16.

    CrossRef  Google Scholar 

  • Steiner, J. M., and Löffelhardt, W., 2002. Protein import into cyanelles. Trends in Plant Sciences, 7, 72–77.

    CrossRef  Google Scholar 

  • Steneck, R. S., and Dethier, M. N., 1994. A functional group approach to the structure of algal-dominated communities. Oikos, 69, 476–498.

    CrossRef  Google Scholar 

  • Summerer, M., Sonntag, B., and Sommaruga, R., 2008. Ciliate-symbiont specificity of freshwater endosymbiotic Chlorella (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 44, 7–84.

    CrossRef  Google Scholar 

  • Tappan, H., 1980. The Paleobiology of Plant Protists. San Francisco: Freeman, p. 1029.

    Google Scholar 

  • Trautman, D. A., Hinde, R., and Borowitzka, M. A., 2000. Population dynamics of an association between a coral reef sponge and a red macroalga. Journal of Experimental Marine Biology and Ecology, 244, 87–105.

    CrossRef  Google Scholar 

  • Trautman, D. A., Hinde, R., and Borowitzka, M. A., 2002. The role of habitat in determining the distribution of a sponge-red alga symbiosis on a coral reef. Journal of Experimental Marine Biology and Ecology, 283, 1–20.

    CrossRef  Google Scholar 

  • van Dolah, F. M., 2000. Marine algal toxins: origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108, 133–141.

    CrossRef  Google Scholar 

  • van Soest, R. W. M., 1990. Shallow-water reef sponges of eastern Indonesia. In Rützler, K. (ed.), New Perspectives in Sponge Biology, Washington, DC: Smithsonian Institution Press, pp. 302–308.

    Google Scholar 

  • Vink, A., 2004. Calcareous Dinoflagellate cysts in South and equatorial Atlantic surface sediments: diversity, distribution, ecology and potential for palaeoenvironmental reconstruction. Marine Micropaleontology, 50, 43–88.

    CrossRef  Google Scholar 

  • Wilkinson, A. N., Zeeb, B. A., and Smol, J. P., 2001. Atlas of Chrysophycean Cysts. Dordrecht: Kluwer, 169 pp.

    Google Scholar 

  • Willems, H., 1994. New calcareous dinoflagellates from the upper cretaceous white chalk of northern Germany. Review Palaeobotanic Palynology, 84, 57–72.

    CrossRef  Google Scholar 

  • Williams, B. A. P., and Keeling, P. J., 2003. Cryptic organelles in parasitic protists and fungi. Advances in Parasitology, 54, 9–67.

    CrossRef  Google Scholar 

  • Wolfe, A. P., and Perren, B. P., 2001. Chrysophyte microfossils record marked responses to recent environmental changes in high- and mid-arctic lakes. Canadian Journal of Botany, 79, 747–752.

    Google Scholar 

  • Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., and Bhattacharya, D., 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution, 21, 809–818.

    CrossRef  Google Scholar 

  • Yoon, H. S., Müller, K. M., Sheath, R. G., and Bhattacharya, D., 2006. Defining the major lineages of red algae (Rhodophyta). Journal of Phycology, 42, 482–492.

    CrossRef  Google Scholar 

  • Young, J. R., Brown, P. R., and Burnett, J. A., 1994. Paleontological perspectives. In Green, J. C., and Leadbeater, B. S. C. (eds.), The Haptophyte Algae. Oxford, UK: Clarendon Press, pp. 379–392.

    Google Scholar 

  • Zankl, H., 2007. The origin of High-Mg-Calcite microbialites in cryptic habitats of Caribbean coral reefs – their dependence on light and turbulence. Facies, 29, 55–60.

    CrossRef  Google Scholar 

  • Zeeb, B. A., and Smol, J. P., 2001. Chrysophyte scales and cysts. In John, P., Smol, H., Birks, J. B., and Last, W. M. (eds.), Tracking Environmental Change Using Lake Sediments. Vol 3. Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer, pp. 203–223.

    Google Scholar 

  • Zonneveld, K. A. F., Höll, C., Janofske, D., Karwath, B., Kerntopf, B., Rühlemann, C., Willems, H., 1999. Calcareous dinoflagellate cysts as paleo-environmental tools. In Fischer, G., and Wefer, G. (eds.), Use of Proxies in Paleoceanography. Berlin: Springer, pp. 145–164.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Friedl, T., Brinkmann, N., Mohr, K.I. (2011). Algae (Eukaryotic). In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_7

Download citation