Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Dolomite, Microbial

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_76

Synonyms

Bacterial dolomite; Organogenic dolomite

Definition

Dolomite. Widely distributed rock-forming mineral, CaMg(CO3)2. Usually, white or colorless, but can be yellowish and brown with rhombohedral crystals exhibiting curved, composite faces. It also occurs with massive and granular habit and has rhombohedral {1011} cleavage.

Dolomitization. The process of converting calcite in limestones to dolomite by the action of magnesium-bearing solutions.

Introduction

The mineral dolomite is notoriously difficult to synthesize under laboratory conditions at low temperature (less than 50°C) and despite its abundance in the ancient rock record, scarcely forms in modern environments. This apparent departure from the geologists’ guiding principle that the “present is the key to the past,” established by Hutton’s principle of uniformitarianism, is at the heart of the “Dolomite Problem,” which is a twofold issue (e.g., McKenzie, 1991).

The dolomite problem

The first aspect of the problem is the...

Keywords

Respiration Acidity Calcite Pyrite Alkalinity 
This is a preview of subscription content, log in to check access

Bibliography

  1. Baker, P. A., and Kastner, M., 1981. Constraints on the formation of sedimentary dolomite. Science, 213, 214–216.CrossRefGoogle Scholar
  2. Banfield, J. F., Welch, S. A., Zhang, H., Thompsen-Ebert, T., and Penn, R. L., 2000. Aggregation based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289, 751–754.CrossRefGoogle Scholar
  3. Barbieri, R., Stivaletta, N., Marinangeli, L., and Ori, G. G., 2006. Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planetary and Space Science, 54, 726–736.CrossRefGoogle Scholar
  4. Bontognali, T. R. R., Vasconcelos, C., Warthmann, R. J., Dupraz, C., Bernasconi, S. M., and McKenzie, J. A., 2008. Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36, 663–666.CrossRefGoogle Scholar
  5. Bosak, T., and Newman, D. K., 2003. Microbial nucleation of calcium carbonate in the Precambrian. Geology, 31, 577–580.CrossRefGoogle Scholar
  6. Brady, P. V., Krumhans, J. L., and Papenguth, H. W., 1996. Surface complexation clues to dolomite growth. Geochimica et Cosmochimica Acta, 60, 727–731.CrossRefGoogle Scholar
  7. Burns, S. J., McKenzie, J. A., and Vasconcelos, C., 2000. Dolomite formation and biochemical cycles in the Phanerozoic. Sedimentology, 47, 49–61.CrossRefGoogle Scholar
  8. Chafetz, H. S., and Folk, R. L., 1984. Travertines: depositional morphology and the bacterially constructed constituent. Journal of Sedimentary Petrology, 54, 289–316.Google Scholar
  9. Chan, C. S., De Stasio, G., Welch, S. A., Girasole, M., Frazer, B. H., Nesterova, M. V., Fakra, S., and Banfield, J. F., 2004. Microbial polysaccharides template assembly of nanocrystal fibers. Science, 303, 1656–1658.CrossRefGoogle Scholar
  10. Curtis, C. D., Coleman, M. L., and Love, L. G., 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochimica et Cosmochimica Acta, 50, 2321–2334.CrossRefGoogle Scholar
  11. Douglas, S., and Beveridge, T. J., 1998. Mineral formation by bacterial in natural microbial communities. FEMS Microbial Ecology, 26, 79–88.CrossRefGoogle Scholar
  12. Elhadj, S., DeYoreo, J. J., Hoyer, J. R., and Dove, P. M., 2006. Role of molecular charge and hydrophobicity in regulating the kinetics of crystal growth. Proceedings of the National Academy of Science, 103, 19237–19242.CrossRefGoogle Scholar
  13. Fortin, D., Ferris, F. G., and Beveridge, T. J., 1997. Surface-mediated mineral development by bacteria. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions Between Microbes and Mineral, Reviews in Mineralogy. Washington, DC: Mineralogical Society of America.Google Scholar
  14. Fowle, D. A., and Fein, J. B., 2001. Quantifying the effects of Bacillus subtilis cell walls on the precipitation of copper hydroxide from aqueous solution. Geomicrobiology Journal, 18, 77–91.CrossRefGoogle Scholar
  15. Hardie, L. A., 1987. Dolomitization: a critical view of some current views. Journal of Sedimentary Petrology, 57, 166–183.CrossRefGoogle Scholar
  16. Kenward, P. A., Goldstein, R. G., Gonzalez, L. A., and Roberts, J. A., 2009. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology, 7, 556–565.CrossRefGoogle Scholar
  17. Land, L. S., 1998. Failure to precipitate dolomite at 25 (C from dilute solution despite 1000-fold oversaturation after 32 yr. Aquatic Geochemistry, 4, 361–368.CrossRefGoogle Scholar
  18. Lumsden, D. N., 1988. Characteristics of deep marine dolomite. Journal of Sedimentary Petrology, 58, 1023–1031.Google Scholar
  19. Madigan, M. T., and Martinko, J. M., 2005. Brock Biology of Microorganisms, 11th edn. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
  20. Mazullo, S. J., 2000. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 70, 10–23.CrossRefGoogle Scholar
  21. McKenzie, J. A., 1991. The dolomite problem: an outstanding controversy. In Muller, D. W., Weisser, H., and McKenzie, J. A. (eds.), Controversies in Modern Geology. New York: Academic Press, 490 p.Google Scholar
  22. Moore, T. S., Murray, R. W., Kurtz, A. C., and Schrag, D. P., 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229, 141–154.CrossRefGoogle Scholar
  23. Moreira, N. F., Walter, L. M., Vasconcelos, C., McKenzie, J. A., and McCall, P. J., 2004. Role of sulfide oxidation in dolomitization: sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology, 32, 701–704.CrossRefGoogle Scholar
  24. Nadson, G. A., 1928. Breitag zur kenntnis der bakteriogenen kalkablagerungen. Archiv fuer Hydrobiologie, 19, 154–164.Google Scholar
  25. Neher, J., 1959. Bakterien in tieferliegenden gesteinslagen. Eclogae Geologicae Helvetiae, 52, 619–625.Google Scholar
  26. Nielsen, A. E., 1984. Electrolyte crystal-growth mechanisms. Journal of Crystal Growth, 67, 289–310.CrossRefGoogle Scholar
  27. Pursar, B. H., Tucker, M. E., and Zenger, D. H., 1994. Problems, progress and future research concerning dolomites and dolomitization. In Pursar, B., Tucker, M., and Zenger, D. (eds.), Dolomites: A Volume in Honour of Dolomieu. Publication of the International Association of Sedimentology, Vol. 21, pp. 3–20.Google Scholar
  28. Rancourt, D. G., Thibault, P. J., Mavrocordatos, D., and Lamarche, G., 2005. Hydrous ferrous oxide precipitation in the presence f nonmetabolizing bacteria: constraints on the mechanism of a biotic effect. Geochimica et Cosmochimica Acta, 69, 553–577.CrossRefGoogle Scholar
  29. Roberts, J. A., Bennett, P. C., Gonzalez, L. A., Macpherson, G. L., and Milliken, K. L., 2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32, 277–280.CrossRefGoogle Scholar
  30. Sánchez-Román, M., Vasconcelos, C., Schmid, T., Dittrich, M., McKenzie, J. A., Zenobi, R., and Rivadeneyra, M. A., 2008. Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology, 36, 879–882.CrossRefGoogle Scholar
  31. Sánchez-Román, M., McKenzie, J. A., Wagener, A., Rivadeneyra, M. A., and Vasconcelos, C., 2009. Presence of sulfate does not inhibit low-temperature dolomite formation. Earth and Planetary Science Letters, 285, 131–139.CrossRefGoogle Scholar
  32. Schultze-Lam, S., Fortin, D., Davis, B. S., and Beveridge, T. J., 1996. Mineralization of bacterial surfaces. Chemical Geology, 132, 171–181.CrossRefGoogle Scholar
  33. Sibley, D. F., Dedoes, R. E., and Bartlett, T. R., 1987. The kinetics of dolomitization. Geology, 15, 1112–1114.CrossRefGoogle Scholar
  34. Siegel, F. R., 1961. Factors influencing the precipitation of dolomite. Kansas Geological Survey Bulletin, 152, 127–158.Google Scholar
  35. van Lith, Y., Warthmann, R., Vasconcelos, C., and McKenzie, J. A., 2003a. Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 50, 237–245.CrossRefGoogle Scholar
  36. van Lith, Y., Warthmann, R., Vasconcelos, C., and McKenzie, J. A., 2003b. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1, 71–79.CrossRefGoogle Scholar
  37. Vasconcelos, C., and McKenzie, J. A., 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions, Lagoa Vermelha, Rio de Janeiro, Brazil. Journal of Sedimentary Research, 67, 378–390.Google Scholar
  38. Vasconcelos, C., McKenzie, J. A., Bernasconi, S., Grujic, D., and Tien, A. J., 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377, 220–222.CrossRefGoogle Scholar
  39. Vasconcelos, C., McKenzie, J. A., Warthmann, R., and Bernasconi, S. M., 2005. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33, 317–320.CrossRefGoogle Scholar
  40. Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J. A., and Karpoff, A. M., 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091–1094.CrossRefGoogle Scholar
  41. Whipkey, C. E., Capo, R. C., Hsieh, J. C. C., and Chadwick, O. A., 2002. Development of magnesian carbonates in Quaternary soils on the Island of Hawaii. Journal of Sedimentary Research, 72, 158–165.CrossRefGoogle Scholar
  42. Wright, D., 1999. The role of sulfate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126, 147–157.CrossRefGoogle Scholar
  43. Wright, D. T., and Wacey, D., 2005. Precipitation of dolomite using sulphate reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, 52, 987–1008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of GeologyUniversity of KansasLawrenceUSA