Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Algae (Eukaryotic)

  • Thomas Friedl
  • Nicole Brinkmann
  • Kathrin I. Mohr
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_7

Algae (eukaryotic)

Eukaryotic algae are a collection of extremely diverse, nonrelated organisms that perform photosynthesis in plastids, permanent organelles of green, brown, or bluish colors derived from endosymbiosis. In contrast to plants, algae do not form embryos.

Algae is a term of convenience and refers to a collection of highly diverse organisms that undertake photosynthesis and/or possess plastids (Keeling, 2004). Many authors even include the prokaryotic cyanobacteria into the algae, because they exhibit a life-style rather similar to their eukaryotic counterparts and often share the same habitat with eukaryotic algae. Cyanobacteria form the origin of plastids (for reviews see McFadden, 2001; Keeling, 2004; Palmer, 2003). Plastids are the organelles of plants and eukaryotic algae that harbor photosynthesis and synthesize many chemical compounds also important for other biochemical pathways (e.g., aromatic amino acids, heme, isoprenoids, and fatty acids); nonphotosynthetic...


Green Alga Fossil Record Accessory Pigment Secondary Plastid Algal Lineage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Adey, W. H., 1998. Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. Journal of Phycology, 34, 393–406.CrossRefGoogle Scholar
  2. Andersen, R. A., 2004. Biology and systematics of heterokont and haptophyte algae. American Journal of Botany, 91, 1508–1522.CrossRefGoogle Scholar
  3. Apprill, A. M., and Gates, R. D., 2007. Recognizing diversity in coral symbiotic dinoflagellate communities. Molecular Ecology, 16, 1127–1134.CrossRefGoogle Scholar
  4. Arp, G., Bissett, A., Brinkmann, N., Cousin, S., De Beer, D., Friedl, T., Mohr, K. I., Neu, T. R., Reimer, A., Shiraishi, F., Stackebrandt, E., and Zippel, B., 2010. Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. Geological Society, London, Special Publications 2010, 336, 83–118.CrossRefGoogle Scholar
  5. Baker, A. C., 2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of symbiodinium. Annual Review of Ecology, Evolution and Systematics, 34, 661–689.CrossRefGoogle Scholar
  6. Betts-Piper, A. M., Zeeb, B. A., and Smol, J. P., 2004. Distribution and autecology of chrysophyte cysts from high Arctic Svalbard lakes: preliminary evidence of recent environmental change. Journal of Paleolimnology, 31, 467–481.CrossRefGoogle Scholar
  7. Bhattacharya, D., and Schmidt, H. A., 1997. Division glaucocystophyta. In Bhattacharya, D. (ed.), Origin of Algae and Their Plastids, Wien: Springer-Verlag, pp. 139–148.CrossRefGoogle Scholar
  8. Bilan, M. I., and Usov, A. I., 2001. Polysaccharides of calcareous algae and their effect on the calcification process. Russian Journal of Bioorganic Chemistry, 27, 2–16.CrossRefGoogle Scholar
  9. Borowitzka, M. A., 1977. Algal calcification. Oceanography and Marine Biology: An Annual Review, 15, 189–223.Google Scholar
  10. Bremer, K., 1985. Summary of green plant phylogeny and classification. Cladistics, 1, 369–385.CrossRefGoogle Scholar
  11. Butterfield, N. J., 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386–404.CrossRefGoogle Scholar
  12. Chisholm, J. R. M., 2003. Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography, 48, 1376–1387.CrossRefGoogle Scholar
  13. Ciugulea, I., and Triemer, R. E., 2010. A color atlas of photosynthetic Euglenoids. East Lansing: Michigan State University Press.Google Scholar
  14. Daugbjerg, N., and Henriksen, P., 2001. Pigment composition and rbcL sequence data from the silicoflagellate Dictyocha speculum: a heterokont alga with pigments similar to some haptophytes. Journal of Phycology, 37, 1110–1120.CrossRefGoogle Scholar
  15. Delwiche, C. F., 2007. The origin and evolution of dinoflagellates. In Falkowski, P. G., and Knoll, A. H., (eds.), Evolution of Primary Producers of the Sea, New York: Academic, pp. 191–205.CrossRefGoogle Scholar
  16. DeVrind-deJong, E. W., van Emburg, P. R., and deVrind, J. P. M., 1994. Mechanisms of calcification: Emiliania huxleyi as a model system. In Green, J. C., and Leadbeater, B. S. C. (eds.), The Haptophyte Algae, Oxford: Clarendon, pp. 149–166.Google Scholar
  17. Duff, K. E., Zeeb, B. A., and Smol, J. P., 1995. Atlas of Chrysophycean Cysts. Dordrecht: Kluwer Academic, 189 pp.CrossRefGoogle Scholar
  18. Dullo, W. C., Moussavian, E., and Brachert, T., 1990. The foralgal crust facies of the deeper fore reefs in the Red Sea. Geobios, 23, 261–281.CrossRefGoogle Scholar
  19. Edvardsen, B., Eikkrem, W., Green, J. C., Andersen, R. A., van der Staay, S. Y. M., and Medlin, L. K., 2000. Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia, 39, 19–35.CrossRefGoogle Scholar
  20. Elloranta, P., 1995. Biogeography of chrysophytes in Finnish lakes. In Sandgren, C. D., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae. Ecology, Phylogeny and Development, Cambridge: Cambridge University Press, pp. 214–231.CrossRefGoogle Scholar
  21. Fawley, M. W., Yun, Y., and Qin, M., 2000. Phylogenetic analyses of 18S rDNA sequences reveal a new coccoid lineage of the Prasinophyceae (Chlorophyta). Journal of Phycology, 36, 387–393.CrossRefGoogle Scholar
  22. Fensome, R. A., MacRae, R. A., Moldowan, J. M., Taylor, F. J. R., and Williams, G. L., 2003. The early Mesozoic radiation of dinoflagellates. Paleobiology, 22, 329–338.Google Scholar
  23. Foster, M. S., 2001. Rhodoliths: between rocks and soft places. Journal of Phycology, 37, 659–667.CrossRefGoogle Scholar
  24. Foth, B. J., and McFadden, G. I., 2003. The apicoplast: a plastid in Plasmodium falciparum and other apicomplexan parasites. International Review of Cytology, 224, 57–110.CrossRefGoogle Scholar
  25. Freytet, P., and Verrecchia, E. P., 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology, 45, 535–563.CrossRefGoogle Scholar
  26. Friedl, T., 1997. The evolution of the green algae. Plant Systematics and Evolution, 11, 87–101.CrossRefGoogle Scholar
  27. Glynn, P. W., Veron, J. E. N., and Wellington, G. M., 1996. Clipperton Atoll (eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeography. Coral Reefs, 15, 71–99.Google Scholar
  28. Gottschling, M., Keupp, H., Plötner, J., Knop, R., Willems, H., and Kirsch, M., 2005. Phylogeny of calcareous dinoXagellates as inferred from ITS and ribosomal sequence data. Molecular Phylogenetics and Evolution, 36, 444–455.CrossRefGoogle Scholar
  29. Gottschling, M., Renner, S. S., Meier, K. J. S., Willems, H., and Keupp, H., 2008. Timing deep divergence events in calcareous dinoflagellates. Journal of Phycology, 44, 429–438.CrossRefGoogle Scholar
  30. Graham L. E., Graham J. M., and Wilcox, L. W., 2009. Algae, 2nd edn. San Francisco: Pearson Benjamin Cummings.Google Scholar
  31. Hackett, J. D., Anderson, D. M., Erdner, D. L., and Bhattacharya, D., 2004. Dinoflagellates: a remarkable evolutionary experiment. American Journal of Botany, 91, 1523–1534.CrossRefGoogle Scholar
  32. Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rümmele, S. E., and Bhattacharya, D., 2007. Phylogenetic analysis supports the monophyly of cryophytes and haptophytes and the association of Rhizaria with chromalveolates. Molecular Biology and Evolution, 24, 1702–1713.CrossRefGoogle Scholar
  33. Inouye, I., and Kawachi, M., 1994. The haptonema. In Green, J. C., and Leadbeater, B. S. C. (eds.), The Haptophyte Algae. Oxford: Clarendon, pp. 73–89.Google Scholar
  34. Ishida, K., Green, B. R., and Cavalier-Smith, T., 1999. Diversification of a chimaeric algal group, the chlorarachniophytes: Phylogeny of nuclear and nucleomorph small-subunit rRNA genes. Molecular Biology and Evolution, 16, 321–331.CrossRefGoogle Scholar
  35. Janofske, D., 1992. Kalkiges Nannoplankton, insbesondere kalkige Dinoflagellaten-Zysten der alpinen Ober-Trias: Taxonomie, Biostratigraphie und Bedeutung für die Phylogenie der Peridiniales. Berliner Geowiss. Abh. (E), 4, 1–53.Google Scholar
  36. Karol, K. G., Mccourt, R. M., Cimino, M. T., and Delwiche, C. F., 2001. The closest living relatives of land plants. Science, 294, 2351–2353.CrossRefGoogle Scholar
  37. Keats, D. W., Knight, M., and Pueschel, C., 1997. Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef. Journal of Experimental Marine Biology and Ecology, 213, 281–293.CrossRefGoogle Scholar
  38. Keeling, P. J., 2004. Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91, 1481–1493.CrossRefGoogle Scholar
  39. Keupp, H., 1991. Fossil calcareous dinoflagellate cysts. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Berlin: Springer, pp. 267–286.CrossRefGoogle Scholar
  40. Kingsley, R. J., Van Gilder, R., LeGeros, R. Z., and Watabe, N., 2003. Multimineral calcareous deposits in the marine alga Acetabularia acetabulum (Chlorophyta; Dasycladaceae). Journal of Phycology, 39, 937–947.CrossRefGoogle Scholar
  41. Kohring, R., 1993. Kalkdinoflagellaten aus dem Mittel- und Obereozän von Jütland (Dänemark) und dem Pariser Becken (Frankreich) im Vergleich mit anderen Tertiär-Vorkommen. Berliner Geowiss. Abh. (E), 6, 1–164.Google Scholar
  42. Kohring, R., Gottschling, M., and Keupp, H., 2005. Examples for character traits and palaeoecological significance of calcareous dinoflagellates. Paläontologische Zeitschrift, 79, 79–91.Google Scholar
  43. Le Gall, L., and Saunders, G. W., 2007. A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the Corallinophycidae subclassis nov. Molecular Phylogenetics and Evolution, 43, 1118–1130.CrossRefGoogle Scholar
  44. Leadbeater, B. S. C., and Barker, D. A. N., 1995. Biomineralization and scale production in the Chrysophyta. In Sandgren, C. D. J., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge, UK: Cambridge University Press, pp. 141–164.CrossRefGoogle Scholar
  45. Leedale, G. F., and Vickerman, K., 2000. Phylum Euglenozoa. In Lee, J. J., Leedale, G. F., and Bradbury P. (eds.), An Illustrated Guide to the Protozoa, 2nd edn. Lawrence: Society of Protozoologists, pp. 1135–1185.Google Scholar
  46. Letsch, M. R., Muller-Parker, G., Friedl, T., and Lewis, L. A., 2009. Elliptochloris marina sp. nov. (Trebouxiophyceae, Chlorophyta), symbiotic green alga of the temperate pacific sea anemones Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria). Journal of Phycology, 47, 1127–1135.CrossRefGoogle Scholar
  47. Lewis, L. A., and McCourt, R. M., 2004. Green algae and the origin of land plants. American Journal of Botany, 91, 1535–1556.CrossRefGoogle Scholar
  48. Littler, M. M., 1972. The crustose Corallinaceae. Oceanography and Marine Biology Annual Review, 10, 311–347.Google Scholar
  49. Malin, G., and Steinke, M., 2004. Dimethyl sulfide production: What is the contribution of the coccolithophores? In Thierstein, H. R., and Young, J. R. (eds.), Coccolithophores – From Molecular Processess to Global Impact. New York: Springer, pp. 127–164.Google Scholar
  50. Marshall, A. T., 1996. Calcification in hermatypic and ahermatypic corals. Science, 271, 637–639.CrossRefGoogle Scholar
  51. Marin, B., and Melkonian, M., 2010. Molecular phylogeny and classification of the mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist, 161, 304–336.CrossRefGoogle Scholar
  52. Martin, S., Castets, M. D., and Clavier, J., 2006. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquatic Botany, 85, 121–128.CrossRefGoogle Scholar
  53. Martin, W., Rujan, T., Richly, E., Hansen, A., Ornelsen, S., Lins, T., Lesiter, D., Stoebe, B., Hasegawa, M., and Penny, D., 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences, USA, 99, 12246–12251.CrossRefGoogle Scholar
  54. McCartney, K., and Wise, S. W. Jr., 1990. Cenozoic silicoflagellates and ebridians from ODP Leg 113: biostratigraphy and notes on morphologic variability. In Barker, P. F., and Kennett, J. P., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: (Ocean Drilling Program), Vol. 113, pp. 729–760.Google Scholar
  55. McCartney, K., and Harwood, D. M., 1992. Silicoflagellates from Leg 120 on the Kerguelen Plateau, southeast Indian Ocean. In Wise, S. W. Jr., Schlich, R., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX: Ocean Drilling Program, Vol. 120, pp. 811–831.Google Scholar
  56. McConnaughey, T., 1991. Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnology and Oceanography, 36, 619–628.CrossRefGoogle Scholar
  57. McConnaughey, T. A., 1994. Calcification, photosynthesis, global carbon cycles. In Doumenge, E., and Allemand Toulemont, A. (eds.), Past and Present Biomneralization Processes Consideration about the Carbonate IUCNCOE Workshop Monaco, Nov 1993. Bulletin Oceanographique 13, 137–156.Google Scholar
  58. McFadden, G. I., 2001. Primary and secondary endosymbiosis and the origin of plastids. Journal of Phycology, 37, 951–959.CrossRefGoogle Scholar
  59. Milanowski, R., Kosmala, S., Zakrys, B., and Kwiatowski, J., 2006. Phylogeny of photosynthetic euglenophytes based on combined chloroplast and cytoplasmic SSU rDNA sequence analysis. Journal of Phycology, 42, 721–730.CrossRefGoogle Scholar
  60. Moestrup, Ø., 1995. Current status of chrysophyte splinter groups: synurophytes, pedinellids, silicoflagellates. In Sandgren, C. D., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae. Cambridge: Cambridge University Press, pp. 75–91.CrossRefGoogle Scholar
  61. Moestrup, Ø., and O'Kelly, C. J., 2002. Class Silicoflagellata Lemmermann, 1901. In Lee, J. J., Leedale, G. F., and Bradbury, P. (eds.), An Illustrated Guide to the Protozoa, 2nd edn. Lawrence, Kansas, USA: Society of Protozoologists, vol. 2, pp. 775–776.Google Scholar
  62. Montresor, M., Zingone, A., and Sarno, D., 1998. Dinoflagellate cyst production at a coastal Mediterranean site. Journal of Plankton Research, 20, 2291–2312.CrossRefGoogle Scholar
  63. Moore, R. B., 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 451, 959–963.CrossRefGoogle Scholar
  64. Morrissey, J., 1980. Community structure and zonation of macroalgae and hermatyptic corals on a fringing reef flat of Magnetic Island (Queensland, Australia). Aquatic Botany, 8, 91–139.CrossRefGoogle Scholar
  65. Nicholas, J. B., Knoll, A. H., and Swett, K., 1990. A bangiophyte red alga from the proterozoic of Arctic Canada. Science, 250, 104–107.CrossRefGoogle Scholar
  66. Palmer, J., 2003. The symbiotic birth and spread of plastids: how many times and whodunit? Journal of Phycology, 39, 4–12.CrossRefGoogle Scholar
  67. Paracer, S., and Ahmadjian, V., 2000. Symbiosis: An Introduction to Biological Associations. New York: Oxford University Press.Google Scholar
  68. Payri, C. E., Maritorena, S., Bizeau, M., and Rodiere, M., 2001. Photoacclimation in the tropical coralline alga Hydrolithon onkodes (Rhodophyta, Corallinacea) from a French Polynesian reef. Journal of Phycology, 37, 223–234.CrossRefGoogle Scholar
  69. Persson, A., Godhe, A., and Karlson, B., 2000. Dinoflagellate cysts in recent sediments from the west coast of Sweden. Botanica Marina, 43, 69–79.CrossRefGoogle Scholar
  70. Potin, P., Floch, J. Y., Augris, C., and Cabioch, J., 1990. Annual growth rate of the calcareous red algae Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia, 204/205, 263–267.CrossRefGoogle Scholar
  71. Probert, I., Fresnel, J., Billard, C., Geisen, M., and Young, J. R., 2007. Light and electron microscope observations of Algirosphera robusta (Prymnesiophyceae). Journal of Phycology, 43, 319–332.CrossRefGoogle Scholar
  72. Pröschold, T., and Leliaert, F., 2007. Systematics of the green algae: conflict of classic and modern approaches. In Brodie, J., and Lewis, J. (eds.), Unravelling the Algae: the Past, Present, and Future of the Algae Systematics. London: Taylor and Francis, pp. 123–153.Google Scholar
  73. Pueschel, C. M., Eichelberger, H. H., and Trick, H. N., 1992. Specialized calciferous cells in the marine alga Rhodogorgon carriebowensis and their implications for models of red algal calcification. Protoplasma, 166, 89–98.CrossRefGoogle Scholar
  74. Riding, R., Cope, J. C. W., and Taylor, P. D., 1998. A coralline-like red alga from the lower Ordovician of Wales. Palaeontology, 41, 1069–1076.Google Scholar
  75. Rost, B., and Riebesell, U., 2004. Coccolithophore calcification and the biological pump: Response to environmental changes. In Thierstein, H. R., and Young, J. R. (eds.), Coccolithophores – From Molecular Processess to Global Impact. New York: Springer, pp. 99–126.Google Scholar
  76. Rott, E., Holzinger, A., Gesierich, D., Kofler, D., and Sanders, D., 2009. Cell morphology, ultrastructure, and calcification pattern of Oocardium stratum, a peculiar lotic desmid. Protoplasma, 10.1007/s00709-009-0050-y.Google Scholar
  77. Saunders, G. W., and Hammersand, M. H., 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. American Journal of Botany, 91, 1494–1507.CrossRefGoogle Scholar
  78. Siver, P. A., and Wolfe, A. P., 2005. Eocene scaled chrysophytes with pronounced modern affinities. International Journal of Plant Sciences, 166, 533–536.CrossRefGoogle Scholar
  79. Siver, P. A., 1995. The distribution of chrysophytes along environmental gradients: their use as bioindicators. In Sandgren, C. D., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae. Cambridge: Cambridge University Press, pp. 232–268.CrossRefGoogle Scholar
  80. Sluiman, H. J., 1985. A cladistic evaluation of the lower and higher green plants (Viridiplantae). Plant Systematics and Evolution, 149, 217–232.CrossRefGoogle Scholar
  81. Smol, J. P., 1995. Applications of chrysophytes to problems in paleoecology. In Sangren, C. D., Smol, J. P., and Kristiansen, J. (eds.), Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge: Cambridge University Press. pp. 303–329.CrossRefGoogle Scholar
  82. Stanley, S. M., Ries, J. B., and Hardie, L. A., 2010. Increased production of calcite and slower growth for the major sediment-producing alga Halimeda as the Mg/Ca ratio of seawater is lowered to a “Calcite Sea” level. Journal of Sedimentary Research, 80, 6–16.CrossRefGoogle Scholar
  83. Steiner, J. M., and Löffelhardt, W., 2002. Protein import into cyanelles. Trends in Plant Sciences, 7, 72–77.CrossRefGoogle Scholar
  84. Steneck, R. S., and Dethier, M. N., 1994. A functional group approach to the structure of algal-dominated communities. Oikos, 69, 476–498.CrossRefGoogle Scholar
  85. Summerer, M., Sonntag, B., and Sommaruga, R., 2008. Ciliate-symbiont specificity of freshwater endosymbiotic Chlorella (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 44, 7–84.CrossRefGoogle Scholar
  86. Tappan, H., 1980. The Paleobiology of Plant Protists. San Francisco: Freeman, p. 1029.Google Scholar
  87. Trautman, D. A., Hinde, R., and Borowitzka, M. A., 2000. Population dynamics of an association between a coral reef sponge and a red macroalga. Journal of Experimental Marine Biology and Ecology, 244, 87–105.CrossRefGoogle Scholar
  88. Trautman, D. A., Hinde, R., and Borowitzka, M. A., 2002. The role of habitat in determining the distribution of a sponge-red alga symbiosis on a coral reef. Journal of Experimental Marine Biology and Ecology, 283, 1–20.CrossRefGoogle Scholar
  89. van Dolah, F. M., 2000. Marine algal toxins: origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108, 133–141.CrossRefGoogle Scholar
  90. van Soest, R. W. M., 1990. Shallow-water reef sponges of eastern Indonesia. In Rützler, K. (ed.), New Perspectives in Sponge Biology, Washington, DC: Smithsonian Institution Press, pp. 302–308.Google Scholar
  91. Vink, A., 2004. Calcareous Dinoflagellate cysts in South and equatorial Atlantic surface sediments: diversity, distribution, ecology and potential for palaeoenvironmental reconstruction. Marine Micropaleontology, 50, 43–88.CrossRefGoogle Scholar
  92. Wilkinson, A. N., Zeeb, B. A., and Smol, J. P., 2001. Atlas of Chrysophycean Cysts. Dordrecht: Kluwer, 169 pp.Google Scholar
  93. Willems, H., 1994. New calcareous dinoflagellates from the upper cretaceous white chalk of northern Germany. Review Palaeobotanic Palynology, 84, 57–72.CrossRefGoogle Scholar
  94. Williams, B. A. P., and Keeling, P. J., 2003. Cryptic organelles in parasitic protists and fungi. Advances in Parasitology, 54, 9–67.CrossRefGoogle Scholar
  95. Wolfe, A. P., and Perren, B. P., 2001. Chrysophyte microfossils record marked responses to recent environmental changes in high- and mid-arctic lakes. Canadian Journal of Botany, 79, 747–752.Google Scholar
  96. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., and Bhattacharya, D., 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution, 21, 809–818.CrossRefGoogle Scholar
  97. Yoon, H. S., Müller, K. M., Sheath, R. G., and Bhattacharya, D., 2006. Defining the major lineages of red algae (Rhodophyta). Journal of Phycology, 42, 482–492.CrossRefGoogle Scholar
  98. Young, J. R., Brown, P. R., and Burnett, J. A., 1994. Paleontological perspectives. In Green, J. C., and Leadbeater, B. S. C. (eds.), The Haptophyte Algae. Oxford, UK: Clarendon Press, pp. 379–392.Google Scholar
  99. Zankl, H., 2007. The origin of High-Mg-Calcite microbialites in cryptic habitats of Caribbean coral reefs – their dependence on light and turbulence. Facies, 29, 55–60.CrossRefGoogle Scholar
  100. Zeeb, B. A., and Smol, J. P., 2001. Chrysophyte scales and cysts. In John, P., Smol, H., Birks, J. B., and Last, W. M. (eds.), Tracking Environmental Change Using Lake Sediments. Vol 3. Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer, pp. 203–223.Google Scholar
  101. Zonneveld, K. A. F., Höll, C., Janofske, D., Karwath, B., Kerntopf, B., Rühlemann, C., Willems, H., 1999. Calcareous dinoflagellate cysts as paleo-environmental tools. In Fischer, G., and Wefer, G. (eds.), Use of Proxies in Paleoceanography. Berlin: Springer, pp. 145–164.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas Friedl
    • 1
  • Nicole Brinkmann
    • 2
  • Kathrin I. Mohr
    • 3
    • 4
  1. 1.Albrecht-von-Haller-Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
  2. 2.Geobiology Group Geoscience CenterUniversity of GöttingenGöttingenGermany
  3. 3.Albrecht-von-Haller-Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
  4. 4.Helmholtz Centre for Infection ResearchBraunschweigGermany