Skip to main content

Calcium Biogeochemistry

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 245 Accesses

Definition

Calcium (Ca) has the atomic number 20 and is an alkaline earth metal with an atomic mass of 40.978 amu. The important role of Ca in biogeochemical processes is based on its chemical versatility, which is related to its highly adaptable coordination geometry, its divalent charge, modest binding energies, fast reaction kinetics, and its inertness in redox reactions (Williams, 1974). Calcium is a soft grey alkaline earth metal, and is the fifth most abundant element in the Earth’s crust and the seventh most abundant element in the ocean. It is essential for living organisms, particularly in cell physiology, shell formation, and calcification and hence, is usually the most common metal in many animals.

Calcium isotopes and their application in Biogeochemistry

There are seven Ca isotopes present in nature of which three isotopes (42Ca (0.646%), 43Ca (0.135%) through 44Ca (2.086%)) are stable, one isotope (40Ca (69.941%)) is radiogenic, one isotope (41Ca) is cosmogenic, and two...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Amini, M., Eisenhauer, A., Holmden, C., Boehm, F., Hauff, F., and Jochum, K. P., 2008. d44/40Ca variability in igneous rocks. Geochimica et Cosmochimica Acta 72(12), A19–A19.

    Google Scholar 

  • Berner, R. A., 2004. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. American Journal of Science, 304, 438–453.

    Article  Google Scholar 

  • Berner, E. K., and Berner, R. A., 1996. Global Environment: Water, Air, and Geochemical Cycles. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • De La Rocha, C. L., and DePaolo, D. J., 2000. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science, 289, 1176–1178.

    Article  Google Scholar 

  • Demicco, R. V., Lowenstein, T. K., and Hardie, L. A., 2003. Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology, 31(9), 793–796.

    Article  Google Scholar 

  • Fantle, M. S., and DePaolo, D. J., 2005. Variations in the marine Ca cycle over the past 20 million years. Earth and Planetary Science Letters, 237, 102–117.

    Article  Google Scholar 

  • Farkas, J., Böhm, F., et al. 2007. Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms. Geochimica et Cosmochimica Acta 71(21), 5117–5134.

    Article  Google Scholar 

  • Griffith, E. M., Paytan, A., Caldeira, K., Bullen, T. D., and Thomas E., 2008. A dynamic marine calcium cycle during the past 28 million years. Science, 322, 1671–1674.

    Article  Google Scholar 

  • Gussone, N., Eisenhauer, A., Heuser, A., Dietzel, M., Bock, B., Böhm, F., Spero, H., Lea, D. W., Bijma, J., and Nägler, T. F., 2003. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim Cosmochim Acta, 67(7), 1375–1382.

    Article  Google Scholar 

  • Hart, S. R., and Zindler, A., 1989. Isotope fractionation laws: a test using calcium. International Journal of Mass Spectrometry and Ion Physics, 89, 287–301.

    Article  Google Scholar 

  • Hippler, D., Eisenhauer, A., and Thomas, F. N., 2006. Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140 ka. Geochim Cosmochim Acta, 70, 90–100.

    Article  Google Scholar 

  • Heuser, A., Eisenhauer, A., Böhm, F., Wallmann, K., Gussone, N., Pearson, P. N., Nägler, T. F., and Dullo, W.-C., 2005. Calcium isotope (d44/40Ca) variations of Neogene planktonic foraminifera. Paleoceanography, 20.

    Google Scholar 

  • Lemarchand, D., Wasserburg, G. J., and Papanastassiou, A., 2004. Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim Cosmochim Acta, 68(22), 4665–4678.

    Article  Google Scholar 

  • Nägler, T. F., Villa, I. M., 2000. In pursuit of the 40K branching ratios: K-Ca and 39Ar-40Ar dating of gem silicates. Chem Geol 169, 5–16.

    Article  Google Scholar 

  • Nägler, T., Eisenhauer, A., Müller, A., Hemleben, C., and Kramers, J., 2000. The δ44Ca-isotopes: new powerful tool for reconstruction of past sea surface temperatures. Geochemistry, Geophysics, Geosystems, 1, doi: 2000GC000091.

    Google Scholar 

  • Thompson, G., 1983. Hydrothermal Fluxes in the Ocean. New York: Academic Press.

    Google Scholar 

  • Williams, R. J. P., 1974. Calcium ions: their ligands and their function. Biochemical Society Symposia, 39, 133–138.

    Google Scholar 

  • Zhu, P., and Macdougall, J. D., 1998. Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim Cosmochim Acta, 62(10), 1691–1698.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Eisenhauer, A. (2011). Calcium Biogeochemistry. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_40

Download citation

Publish with us

Policies and ethics