Skip to main content

Microbial Biomineralization

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Microbial biomineral formation

Definition

Microbial biomineralization describes the formation and deposition of minerals directly mediated or indirectly influenced by microorganisms (Mann, 2001; Weiner and Dove, 2003; Ehrlich, 1999). A huge variety of minerals results from individual biomineralization pathways linked to the phylogeny and metabolic activity of the microorganisms involved (Weiner and Dove, 2003; Minsky et al., 2002). Moreover, microbial biominerals may differ distinctly from their inorganically formed equivalents in shape, size, crystallinity, isotopic, and trace element composition (Bazylinski et al., 2007; Haferburg and Kothe, 2007; Takahashi et al., 2007; Weiner and Dove, 2003). A compilation of microbial biominerals and their source organisms is given in Table 1.

Microbial Biomineralization. Table 1 Overview of minerals formed by microbial biomineralization and the organism(s) involved

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Baeuerlein, E., 2000. Biomineralization: From Biology to Biotechnology and Medical Application. Weinheim: Wiley-VCH Verlag GmbH, 316 p.

    Google Scholar 

  • Banfield, J. F., and Nealson, K. H., (eds.), 1997. Geomicrobiology: Interactions Between Microbes and Minerals. Reviews in Mineralogy, Ribbe, P. H. (series ed.). Washington, DC: Mineralogical Society of America. Vol. 35, 448 p.

    Google Scholar 

  • Bazylinski, D. A., 1996. Controlled biomineralization of magnetic minerals by Magnetotactic bacteria. Chemical Geology, 132, 191–198.

    Article  Google Scholar 

  • Bazylinski, D. A., and Frankel, R. B., 2003. Biologically controlled mineralization in prokaryotes. In Dove, P. M., De Yoreo, J. J., and Weiner, S. (eds.), Rosso, J. J. (series ed.), Biomineralization. Reviews in Mineralogy and Geochemistry. Washington DC, USA: Mineralogical Society of America and Geochemical Society, Vol. 54, pp. 217–247.

    Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., and Konhauser, K. O., 2007. Modes of biomineralization of magnetite by microbes. Geomicrobiology Journal, 24, 465–475.

    Article  Google Scholar 

  • Bazylinski, D. A., Heywood, B. R., Mann, S., and Frankel, R. B., 1993. Fe3O4 and Fe3S4 in a bacterium. Nature, 366, 218.

    Article  Google Scholar 

  • Benning, L. G., Phoenix, V. R., Yee, N., and Tobin, M. J., 2004. Molecular characterization of cyanobacterial silification using synchrotron infrared micro-spectroscopy. Geochimica et Cosmochimica Acta, 68(4), 729–741.

    Article  Google Scholar 

  • Benzerara, K., Menguy, N., Guyot, F., Skouri, F., de Luca, G., Barakat, M., and Heulin, T., 2004. Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth and Planetary Science Letters, 228, 439–449.

    Article  Google Scholar 

  • Bharde, A. A., Paraikh, R. Y., Baidakova, M., Jouen, S., Hannoyer, B., Enoki, T., Prasad, B. L. V., Shouche, Y. S., Ogale, S., and Sastry, M., 2008. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir, 24, 5787–5794.

    Article  Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.

    Article  Google Scholar 

  • Borowitzka, M. A., 1982. Morphological and cytological aspects of algal calcification. International Review of Cytology, 74, 127–162.

    Article  Google Scholar 

  • Brouwers, G. J., Vijgenboom, E., Corstjens, P. L. A. M., De Vrind, J. P. M., and De Vrind-De Jong, E. W., 2000. Bacterial Mn2+ oxidizing systems and multicopper oxidases: an overview of mechanisms and functions. Geomicrobiology Journal, 17, 1–24.

    Article  Google Scholar 

  • Brune, D. C., 1989. Sulfur oxidation by phototrophic bacteria. Biochimica et Biophysica Acta, 975, 189–221.

    Article  Google Scholar 

  • Brune, D. C., 1995. Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Archives of Microbiology, 163, 391–399.

    Article  Google Scholar 

  • Chan, C. S., Fakra, S. C., Edwards, D. C., Emerson, D., and Banfiled, J. F., 2009. Iron oxyhydroxide mineralization of microbial extracellular polysaccharides. Geochimica et Cosmochimica Acta, 73(13), 3807–3818.

    Article  Google Scholar 

  • Châtellier, X., Fortin, D., West, M. M., Leppard, G. G., and Ferris, F. G., 2001. Effect of the presence of bacterial surfaces during the synthesis of Fe oxides by oxidation of ferrous ions. European Journal of Mineralogy, 13(4), 705–714.

    Article  Google Scholar 

  • Da Silva, S., Bernet, N., Delgenès, J. P., and Moletta, R., 2000. Effect of culture conditions on the formation of struvite by Myxococcus Xanthus. Chemosphere, 40, 1289–1296.

    Article  Google Scholar 

  • Daoud, J., and Karamanev, D., 2006. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering, 19(9), 960–967.

    Article  Google Scholar 

  • Daughney, C. D., Châtellier, X., Chan, A., Kenward, P., Fortin, D., Suttle, C. A., and Fowl, D., 2004. Adsorption and precipitation of iron from seawater by a marine bacteriophage (PWH3a-P1). Marine Chemistry, 91, 101–115.

    Article  Google Scholar 

  • de Vrind-de Jong, E. W., and de Vrind, J. P. M., 1997. Algal deposition of carbonates and silicates. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions between Microbes and Minerals. Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 35, pp. 267–307.

    Google Scholar 

  • Ding, J.-N., Gao, J., Wu, X.-l., Zhang, C.-G., and Qiu, G.-Z., 2007. Jarosite-type precipitates mediated by YN22, Sulfobacillus thermosulfidooxidans, an their influences on strain. Transactions of Nonferrous Metals. Society of China, 17(5), 1038–1044.

    Google Scholar 

  • Donald, R., and Southam, G., 1999. Low temperature anaerobic bacterial diagensis of ferrous monosulfide to pyrite. Geochimica et Cosmochimica Acta, 63(13/14), 2019–2023.

    Article  Google Scholar 

  • Dove, P. M., De Yoreo, J. J., and Weiner, S., (eds.), 2003. Biomineralization. Reviews in Mineralogy and Geochemistry, Rosso, J. J. (series ed.). Washington DC, USA: Mineralogical Society of America and Geochemical Society, Vol. 54, 381 p.

    Google Scholar 

  • Driessens, F. C. M., and Verbeeck, R. K., 1990. Biominerals. Boca Raton, Florida: CRC Press, 440 p.

    Google Scholar 

  • Egal, M., Casiot, C., Morin, G., Parmentier, M., Bruneel, O., Lebrun, S., and Elbaz-Poulichet, F., 2009. Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans stains in an As(III)-rich acid mine water. Chemical Geology, 265(3–4), 432–441.

    Article  Google Scholar 

  • Ehrlich, H. L., 1999. Microbes as geologic agents: their role in mineral formation. Geomicrobiology Journal, 16, 135–153.

    Article  Google Scholar 

  • Ercole, C., Cacchio, P., Botta, A. L., Centi, V., and Lepidi, A., 2007. Bacterially induced mineralization of calcium carboante: the role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis, 13, 42–50.

    Article  Google Scholar 

  • Faivre, D., and Schüler, D., 2008. Magnetotactic bacteria and magnetosoms. Chemical Reviews, 108, 4875–4898.

    Article  Google Scholar 

  • Farina, M., Esquivel, D. M. S., and Lins de Barros, H. G. P., 1990. Magnetic iron-sulphur crystals from magnetotactic microorganism. Nature, 343, 256–258.

    Article  Google Scholar 

  • Folk, R. L., 2005. Nannobacteria and the formation of framboidal pyrite: textural evidence. Journal of Earth System Science, 114(3), 369–374.

    Article  Google Scholar 

  • Fortin, D., and Beveridge, T. J., 1997. Role of the bacterium Thiobacillus in the formation of silicates in acidic mine tailings. Chemical Geology, 141, 235–250.

    Article  Google Scholar 

  • Fortin, D., and Beveridge, T. J., 2000. Mechanistic routes to biomineral surface development. In Bäuerlein, E. (ed.), Biomineralization: From Biology to Biotechnology and Medical Application. Weinheim: Wiley-VCH GmbH, pp. 7–24.

    Google Scholar 

  • Frankel, R. B., and Bazylinski, D. A., 2003. Biologically induced mineralization by bacteria. In Dove, P. M., De Yoreo, J. J., and Weiner, S. (eds.), Rosso, J. J. (series ed.), Biomineralization. Reviews in Mineralogy and Geochemistry. Washington, DC: Mineralogical Society of America and Geochemical Society, Vol. 54, pp. 95–114.

    Google Scholar 

  • Frankel, R. B., Papaefthymiou, G. C., Blakemore, R. P., and O’ Brien, W., 1983. Fe3O4 precipitation in Magnetotactic bacteria. Biochimica et Biophysica Acta, 763, 147–159.

    Article  Google Scholar 

  • Furukawa, Y., and O’Reilly, S. E., 2007. Rapid precipitation of amorphous silica in experimental systems with nontronite (Nau-1) and Shewanella oneidensis MR-1. Geochimica et Cosmochimica Acta, 71(2), 363–377.

    Article  Google Scholar 

  • Haferburg, G., and Kothe, E., 2007. Microbes and metals: interactions in the environment. Journal of Basic Microbiology, 47, 453–467.

    Article  Google Scholar 

  • Hallberg, R., and Ferris, F. G., 2004. Biomineralization by Gallionella. Geomicrobiology Journal, 21, 325–330.

    Article  Google Scholar 

  • He, S., Gui, Z., Zhang, Y., Zhang, S., Wang, J., and Gu, N., 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Material Letters, 61(18), 3984–3987.

    Article  Google Scholar 

  • Heywood, B. R., Bazylinski, D. A., Garratt-Reed, A., Mann, S., and Frankel, R. B., 1990. Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften, 77, 536–538.

    Article  Google Scholar 

  • Ivarson, K. C., and Hallberg, R. O., 1976. Formation of mackinawite by the microbial reduction of jarosite and its application to tidal sediments. Geoderma, 16, 1–7.

    Article  Google Scholar 

  • Kennedy, C. B., Scott, S. D., and Ferris, F. G., 2004. Hydrothermal phase stabilization of 2-line ferrihydrite by bacteria. Chemical Geology, 212, 269–277.

    Article  Google Scholar 

  • Kirschvink, J. L., and Hagadorn, J. W., 2000. 10 a Grand unified theory of Biomineralization. In Bäuerlein, E. (ed.), The Biomineralisation of Nano- and Microstructures. Weinheim: Wiley-VCH GmbH, pp. 139–150.

    Google Scholar 

  • Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., Adams, D. G., and Head, I. M., 2001. Microbial-silica interactions in Iclandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 48, 415–433.

    Article  Google Scholar 

  • Konishi, Y., Tsukiyama, T., Ohno, K., Saitoh, N., Nomura, T., and Nagamine, S., 2006. Intracellular recovery of gold by microbial reduction of AuCl4 ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy, 81(1), 24–29.

    Article  Google Scholar 

  • Konishi, Y., Tsukiyama, T., Tachimi, T., Saitoh, N., Nomura, T., and Nagamine, S., 2007. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochimica Acta, 53(1), 186–192.

    Article  Google Scholar 

  • Kukkadapu, R. K., Zachara, J. M., Fredrickson, J. K., and Kennedy, D. W., 2004. Biotransformation of two-line silica-ferrihydrite by dissimilatory Fe(III)-reducing bacterium: formation of carbonate green rust in the presence of phosphate. Geochimica et Cosmochimica Acta, 68(13), 2799–2814.

    Article  Google Scholar 

  • Lengke, M., and Southam, G., 2006. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochimica et Cosmochimica Acta, 70, 3646–3661.

    Article  Google Scholar 

  • Lian, B., Hu, Q., Chen, J., Ji, J., and Teng, H. H., 2006. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochimica et Cosmochimica Acta, 704, 5522–5535.

    Article  Google Scholar 

  • Lovely, D. (ed.), 2000. Environmental Microbe-Metal Interactions. Washington, DC: ASM Press, 395 p.

    Google Scholar 

  • Lovley, D. R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiology Reviews, 55, 259–287.

    Google Scholar 

  • Lovley, D. R., Stolz, J. F., Nord, Jr. G. L., and Phillips, E. J. P., 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330, 252–254.

    Article  Google Scholar 

  • Lowenstam, H. A., 1981. Minerals formed by organisms. Science, 211, 1126–1131.

    Article  Google Scholar 

  • Lowenstam, H. A., and Weiner, S., 1989. On Biomineralization. New York: Oxford University Press, 324 p.

    Google Scholar 

  • Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. In Compton, R. G., Davies, S. G., and Evans, J. (eds.), Oxford Chemistry Masters Vol. 5. New York: Oxford University Press, 216 p.

    Google Scholar 

  • Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A., and Jannasch, H. W., 1990. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a Magnetotactic bacterium. Nature, 343, 258–261.

    Article  Google Scholar 

  • Minsky, A., Shimoni, E., and Frenkel-Krispin, D., 2002. Stress, order and survival. Nature Reviews Molecular Cell Biology, 3, 50–60.

    Article  Google Scholar 

  • Miot, J., Benzerara, K., Morin, G., Kappler, A., Bernard, S., Obst, M., Férard, C., Skouri-Panet, F., Guigner, J.-M., Posth, N., Galvez, M., Brown, Jr. G. E., and Guyot, F., 2009. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica et Cosmochimica Acta, 73(3), 696–711.

    Article  Google Scholar 

  • Obst, M., Dynes, J. J., Lawrence, J. R., Swerhone, G. D. W., Benterara, K., Kaznatcheev, K., Tyliszczak, T., and Hitchcock, A. P., 2009. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta, 73(14), 4180–4198.

    Article  Google Scholar 

  • O’Loughlin, E. J., 2008. Effects of electron transfer mediators on the bioreduction of Lepidocrocite (γ-FeOOH) by Shewanella putrefaciens CN32. Environmental Science and Technology, 42(18), 6876–6882.

    Article  Google Scholar 

  • Parmar, N., Warren, L. A., Roden, E. E., and Ferris, F. G., 2000. Soild phase capture of strontium by the iron reducing bacteria Shewanella alga strain BRY. Chemical Geology, 169, 281–288.

    Article  Google Scholar 

  • Pasteris, J. D., Freeman, J. J., Goffredi, S. K., and Buck, K. R., 2001. Chemical Geology, 180, 3–18.

    Article  Google Scholar 

  • Pósfai, M., Buseck, P. R., Bazylinski, D. A., and Frankel, R. B., 1998a. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science, 280, 880–883.

    Article  Google Scholar 

  • Pósfai, M., Buseck, P. R., Bazylinski, D. A., and Frankel, R. B., 1998b. Iron sulfides from magnetotactic bacteria: structure, compositions, and phase transitions. American Mineralogist, 83, 1469–1481.

    Google Scholar 

  • Reith, F., Wakelin, S. A., Gregg, A. L., and Schmidt-Mumm, A., 2009. A microbial pathway for the formation of gold-anoumalous calcrete. Chemical Geology, 258(3–4), 315–326.

    Article  Google Scholar 

  • Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A., and Thiel, V., 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogegraphy, Palaeoclimatology, Palaeoecology, 227, 18–30.

    Article  Google Scholar 

  • Rivadeneyra, M. A., Delgado, G., Ramos-Cormenzana, A., and Delgado, R., 1998. Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Research in Microbiology, 149, 277–287.

    Article  Google Scholar 

  • Rivadeneyra, M. A., Delgado, G., Soriano, M., Ramos-Cormenzana, A., and Delgado, R., 2000. Precipitation of carbonates by Nesterenkonia halobia in liquid media. Chemosphere, 41, 617–624.

    Article  Google Scholar 

  • Rivadeneyra, M. A., Ramos-Cormenzana, A., and García-Cervigon, A., 1983. Bacterial formation of struvite. Geomicrobiology Journal, 3, 151–163.

    Article  Google Scholar 

  • Rodriguez-Navarro, C., Jiminez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Muñoz, M. T., and Rodriguez-Gallego, M., 2007. Bacterially mediated mineralization of vaterite. Geochimica et Cosmochimica Acta, 71(5), 1197–1213.

    Article  Google Scholar 

  • Roh, Y., Chon, C.-M., and Moon, J.-W., 2007. Metal reduction and biomineralization by alkaliphilic metal reducing bacterium, Alkaliphilus metalliredigens (QYMF). Geosciences Journal, 11(4), 415–423.

    Article  Google Scholar 

  • Sigel, A., Sigel, H., and Sigel, R. O. (eds.), 2008. Biomineralization: from Nature to Application. Metal Ions in Life Sciences. West Sussex: Wiley and Sons, 4 Vols, 700 p.

    Google Scholar 

  • Smith, D. W., and Strohl, W. R., 1991. Sulfur oxidizing bacteria. In Shively, J. M., and Barton, L. L., (eds.), Variations in Autotrophic Life. London: Academic Press, pp. 121–146.

    Google Scholar 

  • Southam, G., 2000. Bacterial surface-mediated mineral formation. In Lovley, D. R. (ed.), Environmental Microbe-Metal Interactions. Washington DC: ASM Press, pp. 257–276.

    Google Scholar 

  • Streckfuss, J. L., Smith, W. N., Brown, L. R., and Campbel, M. M., 1974. Calcification of selected strains of Streptococcus mutans and Streptococcus sanguis. Journal of Bacteriology, 120, 502–506.

    Google Scholar 

  • Strohl, W. R., Geffers, I., and Larkin, J. M., 1981. Structure of the sulfur inclusions envelopes from four beggiatoas. Current Microbiology, 6, 75–79.

    Article  Google Scholar 

  • Takahashi, Y., Hirata, T., Shimizu, H., Ozaki, T., and Fortin, D., 2007. A rare earth element signature of bacteria in natural waters. Chemical Geology, 244, 569–583.

    Article  Google Scholar 

  • Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., and Webb, S. M., 2004. Biogenic manganes oxides: properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287–328.

    Article  Google Scholar 

  • Thompson, J. B., and Ferris, F. G., 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18, 995–998.

    Article  Google Scholar 

  • Urrutia, M. M., and Beveridge, T. J., 1993. Mechanism of silicate binding to the bacteria cell wall in Bacillus subtilis. Journal of Bacteriology, 175, 1936–1945.

    Google Scholar 

  • Van Dijk, S., Dean, D. D., Zhao, Y., Cirgwin, J. M., Schwartz, Z., and Boyan, B. D., 1998. Purification, amino acid sequence, and cDNA sequence of novel calcium-precipitating proteolipids involved in calcification of Corynebacterium matruchotii, Calcified Tissue International, 62, 350–358.

    Article  Google Scholar 

  • Villalobos, M., Toner, B., Bargar, J., and Sposito, G., 2003. Characterization of manganese oxide prduced by Pseduomonas putida. Geochimica et Cosmochimica Acta, 67(14), 2649–2662.

    Article  Google Scholar 

  • Weiner, S., and Dove, P. M., 2003. An overview of biomineralization processes and the problem of the vital effect. In Dove, P. M., De Yoreo, J. J., and Weiner, S. (eds.), Biomineralization. Reviews in Mineralogy and Geochemistry. Washington DC, USA: Mineralogical Society of America and Geochemical Society, Vol. 54, pp. 1–29.

    Google Scholar 

  • Wilkin, R. T., and Barnes, H. K., 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2), 323–339.

    Article  Google Scholar 

  • Yoshida, H., Yamamoto, K., Murakami, Y., Katsuta, N., Hayashi, T., and Naganuma, T., 2008. The development of Fe-nodules surrounding biological material mediated by microorganisms. Environmental Geology, 55, 1363–1374.

    Article  Google Scholar 

  • Zamarreño, D. V., Inkpen, R., and May, E., 2009. Studies on carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Applied and Environmental Microbiology, 75, 5981–5990.

    Article  Google Scholar 

  • Zegeye, A., Huhuet, L., Abdelmoula, M., Carteret, C., Mullet, M., and Jorand, F., 2007. Biogenic hydroxysulfate green rust, a potential electron acceptor of SRB activity. Geochimica et Cosmochimica Acta, 71, 5450–5462.

    Article  Google Scholar 

  • Zhang, C., Liu, S., Phelps, T. J., Cole, D. R., Horita, J., Fortier, S. M., Elless, M., and Valley, J., 1997. Physiochemical, mineralogical, and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria. Geochimica et Cosmochimica Acta, 61(21), 4621–4632.

    Article  Google Scholar 

  • Zhang, C., Vali, H., Romanek, C. S., Phelps, T. J., and Liu, S. V., 1998. Formation of single-domain magnetite by a thermophilic bacterium. American Mineralogist, 83, 1409–1418.

    Google Scholar 

  • Zhang, J., Lion, L. W., Nelson, Y. M., Shuler, M. L., and Ghiorse, W. C., 2002. Kinetics of Mn (II) oxidation by Leptothrix discophora SS1. Geochimica et Cosmochimica Acta, 65(5), 773–781.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Heim, C. (2011). Microbial Biomineralization. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_33

Download citation

Publish with us

Policies and ethics