Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Animal Biocalcification, Evolution

  • Gert Wörheide
  • Daniel J. Jackson
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_32


SOM. Soluble organic matrix

IOM. Insoluble organic matrix

GRN. Gene regulatory network


One of the major events in the evolution of multicellular animals was the transition from soft-bodied organisms to those that possessed mineralized hard parts for protection and support. This major evolutionary hallmark supported the rapid diversification of animals and their occupation of a diverse range of novel ecological niches at the dawn of the Phanerozoic, between 560 and 530 million years ago, when mineralized skeletons appeared relatively synchronous in a variety of Phyla during the so-called Cambrian Explosion (Knoll, 2003; Conway Morris, 2006). However, it is still unclear exactly what drove this sudden capacity to construct mineralized structures, be it changes in ocean chemistry (Brennan et al., 2004) or the evolution of more diverse ecologies (Cohen, 2005), including predators (Vermeij, 1989). Investigation of biomineralization processes will provide insight...


Calcium Carbonate Ocean Acidification Biomineralization Process Organic Macromolecule Coralline Sponge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Aizenberg, J., Weiner, S., and Addadi, L., 2003. Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connective Tissue Research, 44, 20–25.Google Scholar
  2. Ameye, L., Hermann, R., Killian, C., Wilt, F., and Dubois, P., 1999. Ultrastructural localization of proteins involved in sea urchin biomineralization. Journal of Histochemistry and Cytochemistry, 47, 1189–1200.CrossRefGoogle Scholar
  3. Arp, G., 1999. Calcification of Non-Marine Cyanobacterial Biofilms (USA, PR China, Indonesia, Germany) – Implications for the Interpretation of Fossil Microbialites. PhD Thesis, Mathematisch-Naturwissenschaftliche Fakultät, Georg-August-Universität Göttingen, Göttingen, p. 118.Google Scholar
  4. Bédouet, L., Schuller, M. J., Marin, F., Milet, C., Lopez, E., and Giraud, M., 2001. Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 128, 389–400.CrossRefGoogle Scholar
  5. Bédouet, L., Rusconi, F., Rousseau, M., Duplat, D., Marie, A., Dubost, L., Le Ny, K., Berland, S., Péduzzi, J., and Lopez, E., 2006. Identification of low molecular weight molecules as new components of the nacre organic matrix. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 144, 532–543.CrossRefGoogle Scholar
  6. Blank, S., Arnoldi, M., Khoshnavaz, S., Treccani, L., Kuntz, M., Mann, K., Grathwohl, G., and Fritz, M., 2003. The nacre protein perlucin nucleates growth of calcium carbonate crystals. Journal of Microscopy, 212, 280–291.CrossRefGoogle Scholar
  7. Bottjer, D. J., Davidson, E. H., Peterson, K. J., and Cameron, R. A., 2006. Paleogenomics of echinoderms. Science, 314, 956–960.CrossRefGoogle Scholar
  8. Brennan, S. T., Lowenstein, T. K., and Horita, J., 2004. Seawater chemistry and the advent of biocalcification. Geology, 32, 473–476.CrossRefGoogle Scholar
  9. Carroll, S. B., Grenier, J. K., and Weatherbee, S. D., 2001. From DNA to Diversity – Molecular Genetics and the Evolution of Animal Design. Blackwell: Malden, MA.Google Scholar
  10. Cohen, B. L., 2005. Not armour, but biomechanics, ecological opportunity and increased fecundity as keys to the origin and expansion of the mineralized benthic metazoan fauna. Biological Journal of the Linnean Society, 85, 483–490.CrossRefGoogle Scholar
  11. Conway Morris, S., 2006. Darwin’s dilemma: the realities of the Cambrian “explosion.” Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361, 1069–1083.CrossRefGoogle Scholar
  12. Degens, E., 1979. Why do organisms calcify. Chemical Geology, 25, 257–269.CrossRefGoogle Scholar
  13. Degens, E. T., Kazmierszak, J., and Ittekkot, V., 1985. Cellular response to Ca2 + stress and its geological implications. Acta Palaeontologica Polonica, 30, 115–135.Google Scholar
  14. Demers, C., Hamdy, C. R., Corsi, K., Chellat, F., Tabrizian, M., and Yahia, L., 2002. Natural coral exoskeleton as a bone graft substitute: a review. Bio-Medical Materials and Engineering, 12, 15–35.Google Scholar
  15. Ettensohn, C. A., Illies, M. R., Oliveri, P., and De Jong, D. L., 2003. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo. Development, 130, 2917–2928.CrossRefGoogle Scholar
  16. Ettensohn, C. A., Kitazawa, C., Cheers, M. S., Leonard, J. D., and Sharma, T., 2007. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Development, 134, 3077–3087.CrossRefGoogle Scholar
  17. Gao, F., and Davidson, E., 2008. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proceedings of the National Academy of Sciences of the United States of America, 105, 6091–6096.CrossRefGoogle Scholar
  18. Illies, M. R., Peeler, M. T., Dechtiaruk, A. M., and Ettensohn, C. A., 2002. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus. Development Genes and Evolution, 212, 419–431.CrossRefGoogle Scholar
  19. Jackson, D. J., McDougall, C., Green, K., Simpson, F., Wörheide, G., and Degnan, B. M., 2006. A rapidly evolving secretome builds and patterns a sea shell. BMC Biology, 4, 40.CrossRefGoogle Scholar
  20. Jackson, D., Wörheide, G., and Degnan, B. M., 2007a. Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evolutionary Biology, 7, 160.CrossRefGoogle Scholar
  21. Jackson, D. J., Macis, L., Reitner, J., Degnan, B. M., and Wörheide, G., 2007b. Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science, 316, 1893–1895.CrossRefGoogle Scholar
  22. Kazmierczak, J., Ittekot, U., and Degens, E. T., 1985. Biocalcification through time: environmental challenge and cellular response. Paläontologische Zeitschrift, 59, 15–33.Google Scholar
  23. Killian, C. E., and Wilt, F. H., 1996. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules. Journal of Biological Chemistry, 271, 9150–9159.CrossRefGoogle Scholar
  24. Kirschvink, J. L., and Hagadorn, J. W., 2000. A grand unifying theory of biomineralization. In Bäuerlein, E. (ed.), The Biomineralization of Nano- and Micro-Structures. Weinheim: Wiley, pp. 139–150.Google Scholar
  25. Knoll, A. H., 2003. Biomineralization and evolutionary history. In Dove, P. M., De Yoreo, J. J., and Weiner, S. (eds.), Biomineralization. Washington, DC: The Mineralogical Society of America/Geochemical Society, pp. 329–356.Google Scholar
  26. Livingston, B. T., Killian, C. E., Wilt, F., Cameron, A., Landrum, M. J., Ermolaeva, O., Sapojnikov, V., Maglott, D. R., Buchanan, A. M., and Ettensohn, C. A., 2006. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Developmental Biology, 300, 335–348.CrossRefGoogle Scholar
  27. Lopez, E., Vidal, B., Berland, S., Camprasse, S., Camprasse, G., and Silve, C., 1992. Demonstration of the capacity of nacre to induce bone-formation by human osteoblasts maintained invitro. Tissue & Cell, 24, 667–679.CrossRefGoogle Scholar
  28. Lowenstam, H. A., and Margulis, L., 1980. Evolutionary prerequisites for early phanerozoic calcareous skeletons. Biosystems, 12, 27–41.CrossRefGoogle Scholar
  29. Lowenstam, H. A., and Weiner, S., 1989. On Biomineralization. Oxford: Oxford University Press.Google Scholar
  30. Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford: Oxford University Press.Google Scholar
  31. Mann, S., and Webb, J., 1989. Biomineralization. Weinheim: VCH.Google Scholar
  32. Mann, K., Weiss, I. M., Andre, S., Gabius, H. J., and Fritz, M., 2000. The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. European Journal of Biochemistry, 267, 5257–5264.CrossRefGoogle Scholar
  33. Marin, F., and Westbroek, P., 1998. A marriage of bone and nacre. Nature, 392, 861–862.CrossRefGoogle Scholar
  34. Marshall, C. R., 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences, 34, 355–384.CrossRefGoogle Scholar
  35. Peled-Kamar, M., Hamilton, P., and Wilt, F. H., 2002. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule. Experimental Cell Research, 272, 56–61.CrossRefGoogle Scholar
  36. Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D., 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 1435–1443.CrossRefGoogle Scholar
  37. Politi, Y., Arad, T., Klein, E., Weiner, S., and Addadi, L., 2004. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 306, 1161–1164.CrossRefGoogle Scholar
  38. Reitner, J., and Neuweiler, F. C., 1995. Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups. Facies, 32, 1–70.CrossRefGoogle Scholar
  39. Reitner, J., Thiel, V., Zankl, H., Michaelis, W., Wörheide, G., and Gautret, P., 2000. Organic and biogeochemical patterns in cryptic microbialites. In Riding, R. E., and Awramik, S. M. (eds.), Microbial Sediments. Berlin: Springer, pp. 149–160.Google Scholar
  40. Simkiss, K., 1986. The process of biomineralization in lower plants and animals – an overview. In Leadbeater, B. S. C., and Riding, R. (eds.), Biomineralization in Lower Plants and Animals. The Systematics Association Special Volume 30. Oxford: Clarendron, pp. 19–38.Google Scholar
  41. Simkiss, K., and Wilbur, K. M., 1989. Biomineralization – Cell biology and Mineral Deposition. San Diego: Academic.Google Scholar
  42. Söllner, C., Burghammer, M., Busch-Nentwich, E., Berger, J., Schwarz, H., Riekel, C., and Nicolson, T., 2003. Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science, 302, 282–286.CrossRefGoogle Scholar
  43. Treccani, L., Khoshnavaz, S., Blank, S., Roden, K. v., Schulz, U., Weiss, I. M., Mann, K., Radmacher, M., and Fritz, M., 2003. Biomineralizing proteins, with emphasis on invertebrate-mineralized structures. In Fahnestock, S. R., and Steinbüchl, A. (eds.), Biopolymers. Berlin: Wiley, Vol. 8, pp. 289–321.Google Scholar
  44. Trichet, J., and Defarge, C., 1995. Non-biologically supported organomineralization. Bulletin de l’Institut Océanographique Monaco, 14, 203–236.Google Scholar
  45. Urry, L. A., Hamilton, P. C., Killian, C. E., and Wilt, F. H., 2000. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis. Developmental Biology, 225, 201–213.CrossRefGoogle Scholar
  46. Vermeij, G., 1989. The origin of skeletons. PALAIOS, 4, 585–589.CrossRefGoogle Scholar
  47. Weiner, S., and Dove, P., 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54, 1–29.CrossRefGoogle Scholar
  48. Weiss, I. M., Kaufmann, S., Mann, K., and Fritz, M., 2000. Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. Biochemical and Biophysical Research Communications, 267, 17–21.CrossRefGoogle Scholar
  49. Weiss, I. M., Gohring, W., Fritz, M., and Mann, K., 2001. Perlustrin, a Haliotis laevigata (Abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochemical and Biophysical Research Communications, 285, 244–249.CrossRefGoogle Scholar
  50. Wilt, F. H., Killian, C. E., and Livingston, B. T., 2003. Development of calcareous skeletal elements in invertebrates. Differentiation, 71, 237–250.CrossRefGoogle Scholar
  51. Yan, Z., Jing, G., Gong, N., Li, C., Zhou, Y., Xie, L., and Zhang, R., 2007. N40, a novel nonacidic matrix protein from pearl oyster nacre, facilitates nucleation of aragonite in vitro. Biomacromolecules, 8, 3597–3601.CrossRefGoogle Scholar
  52. Yano, M., Nagai, K., Morimoto, K., and Miyamoto, H., 2007. A novel nacre protein N19 in the pearl oyster Pinctada fucata. Biochemical and Biophysical Research Communications, 362, 158–163.CrossRefGoogle Scholar
  53. Zhu, X., Mahairas, G., Illies, M., Cameron, R. A., Davidson, E. H., and Ettensohn, C. A., 2001. A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo. Development, 128, 2615–2627.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gert Wörheide
    • 1
  • Daniel J. Jackson
    • 2
  1. 1.Department of Earth & Environmental Sciences Palaeontology and GeobiologyLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Courant Research Center GeobiologyUniversity of GöttingenGöttingenGermany