Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Biomarkers (Molecular Fossils)

  • Jochen J. Brocks
  • Kliti Grice
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_30


Biological marker molecules; Geochemical fossils; Molecular fossils


Biomarkers are the molecular fossils of lipids and other natural products. In sedimentary environments, lipids that escape the remineralization process are commonly chemically reduced to hydrocarbon skeletons. Encased in sedimentary rocks, these skeletons can remain intact over hundreds of millions of years. The structure of biomarkers is often directly related to their precursor lipids and may be diagnostic for a specific group or groups of organisms. Diagnostic biomarkers are used to obtain information about the composition of past (microbial) ecosystems or to determine the first occurrence of organisms in the geological record. As many organisms prefer specific habitats, and as lipid compositions of individual organisms are frequently adjusted to changing physical and chemical conditions, biomarkers may also serve as paleoenvironmental proxies, for example for salinity, temperature, and...


Sedimentary Organic Matter Acetic Acid Bacterium Green Sulfur Bacterium Purple Sulfur Bacterium Halophilic Archaea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Adam, P., Schmid, J. C., Mycke, B., Strazielle, C., Connan, J., Huc, A., Riva, A., and Albrecht P., 1993. Structural investigation of non-polar sulfur cross-linked macromolecules in petroleum. Geochimica et Cosmochimica Acta, 57, 3395–3419.CrossRefGoogle Scholar
  2. Albrecht, P., and Ourisson, G., 1969. Diagenèse des hydrocarbures saturés dans une série sédimentaire épaisse (Douala, Cameroun). Geochimica et Cosmochimica Acta, 33, 138–142.CrossRefGoogle Scholar
  3. Atahan, P., Grice, K., and Dodson, J., 2007. Human influence on holocene environmental change in the Yangtze river delta: a combined biomarker, δ13C, 14C, pollen and charcoal approach. The Holocene, 17, 507–515.CrossRefGoogle Scholar
  4. Audino, M., Grice, K., Alexander, R., and Kagi, R. I., 2002. Macrocyclic alkanes in crude oils from the algaenan of Botryococcus braunii. Organic Geochemistry, 33, 979–984.CrossRefGoogle Scholar
  5. Barghoorn, E. S., 1957. Origin of life. Geological Society of America (Memoir), 67, 75–85.Google Scholar
  6. Barghoorn, E. S., Meinschein, W. G., and Schopf, J. W., 1965. Paleobiology of a Precambrian shale. Science, 148, 461–472.CrossRefGoogle Scholar
  7. Berthelot, M., 1866. Sur l’origine des carbures et des combustibles minéraux. Annales de Chimie Physique, 9, 481–483.Google Scholar
  8. Bian, L., Hinrichs, K. U., Xie, T., Brassell, S. C., Iversen, N., Fossing, H., Jørgensen, B. B., Sylva, S. P., and Hayes, J. M., 2001. Algal and archaeal polyisoprenoids in a recent marine sediment: molecular isotopic evidence for anaerobic oxidation of methane. Geochemistry, Geophysics, Geosystems, 2, 2000GC000112.Google Scholar
  9. Bird, C. W., Lynch, J. M., Pirt, F. J., Reid, W. W., Brooks, C. J. W., and Middleditch, B. S., 1971. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature, 230, 473–474.CrossRefGoogle Scholar
  10. Blokker, P., Schouten, S., De Leeuw, J. W., Sinninghe Damsté, J. S., and Van Den Ende, H., 2000. A comparative study of fossil and extant algaenans using ruthenium tetroxide degradation. Geochimica et Cosmochimica Acta, 64, 2055–2065.CrossRefGoogle Scholar
  11. Blokker, P., Van Bergen, P. F., Pancost, R. D., Collinson, M. E., Sinninghe Damsté, J. S., and De Leeuw, J. W., 2001. The chemical structure of Gloeocapsamorpha prisca microfossils: implication for their origin. Geochimica et Cosmochimica Acta, 65, 885–900.CrossRefGoogle Scholar
  12. Bode, H. B., Zeggel, B., Silakowski, B., Wenzel, S. C., Hans, R., and Müller, R., 2003. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Molecular Microbiology, 47, 471–481.CrossRefGoogle Scholar
  13. Bosch, H. J., Sinninghe Damsté, J. S., and De Leeuw, J. W., 1998. Molecular palaeontology of eastern Mediterranean sapropels: evidence for photic zone euxinia. Proceedings of the Ocean Drilling Program, Scientific Results, 160, 285–295.Google Scholar
  14. Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., and Sarnthein, M., 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature, 320, 129–133.CrossRefGoogle Scholar
  15. Brocks, J. J., and Banfield, J., 2009. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nature Reviews Microbiology, 7, 601.CrossRefGoogle Scholar
  16. Brocks, J. J., and Schaeffer, P., 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1,640 Ma Barney Creek formation. Geochimica et Cosmochimica Acta, 72, 1396–1414.CrossRefGoogle Scholar
  17. Brocks, J. J., and Summons, R. E., 2004. Sedimentary hydrocarbons, biomarkers for early life. In Schlesinger, W. H. (ed.), Treatise on Geochemistry, Vol 8, Biogeochemistry. Oxford: Elsevier-Pergamon, pp. 63–115.Google Scholar
  18. Brocks, J. J., Summons, R. E., Buick, R., and Logan, G. A., 2003a. Origin and significance of aromatic hydrocarbons in giant iron ore deposits of the late Archean Hamersley Basin in Western Australia. Organic Geochemistry, 34, 1161–1175.CrossRefGoogle Scholar
  19. Brocks, J. J., Buick, R., Logan, G. A., and Summons, R. E., 2003b. Composition and syngeneity of molecular fossils from the 2.78–2.45 billion year old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochimica et Cosmochimica Acta, 67, 4289–4319.CrossRefGoogle Scholar
  20. Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A. H., Logan, G. A., and Bowden, S. A., 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature, 437, 866–870.CrossRefGoogle Scholar
  21. Brocks, J. J., Grosjean, E., and Logan, G. A., 2008. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta, 72, 871–888.CrossRefGoogle Scholar
  22. Burlingame, A. L., Haug, P., Belsky, T., and Calvin, M., 1965. occurrence of biogenic steranes and pentacyclic triterpanes in an Eocene shale and in an early Precambrian shale (2.7 x 109 years). Proceedings of the National Academy of Sciences, 54, 406.CrossRefGoogle Scholar
  23. Carrillo-Hernandez, T., Schaeffer, P., Adam, P., Albrecht, P., Derenne, S., and Largeau, C., 2003. Remarkably well preserved archaeal and bacterial membrane lipids in 140 million years old sediments from the Russion platform (Kashpir Oil Shales, Upper Jurassic). 21st International Meeting on Organic Geochemistry. Poland: Kraków, pp. 77–78.Google Scholar
  24. Collister, J. W., Summons, R. E., Lichtfouse, E., and Hayes, J. M., 1992. An isotopic biogeochemical study of the Green River oil shale. Organic Geochemistry, 19, 265–276.CrossRefGoogle Scholar
  25. Cox, H. C., De Leeuw, J. W., Schenk, P. A., Van Konigsveld, H., Jansen, J. C., Van De Graaf, B., Van Geerstein, V. J., Kanters, J. A., Kruk, C., and Jans, A. W. H., 1986. Bicadinane, a C30 pentacyclic isoprenoid hydrocarbon found in crude oil. Nature, 319, 316–318.CrossRefGoogle Scholar
  26. David, M., Metzger, P., and Casadevall, E., 1988. Two cyclobotryococcenes from the B race of the green alga Botryococcus braunii. Phytochemistry, 27, 2863.CrossRefGoogle Scholar
  27. De Leeuw, J. W., and Largeau, C., 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In Engel, M. H., and Macko, S. A. (ed.), Organic Geochemistry, Principles and Applications. New York: Plenum Press, pp. 23–72.CrossRefGoogle Scholar
  28. De Leeuw, J., Versteegh, G., and Van Bergen, P., 2006. Biomacromolecules of algae and plants and their fossil analogues. Plant Ecology, 182, 209.Google Scholar
  29. De Rosa, M., and Gambacorta, A., 1988. The lipids of archaebacteria. Progress in Lipid Research, 27, 153–175.CrossRefGoogle Scholar
  30. Del Rio, J. C., and Philp, R. P., 1999. Field ionization mass spectrometric study of high molecular weight hydrocarbons in a crude oil and a solid bitumen. Organic Geochemistry, 30, 279–286.CrossRefGoogle Scholar
  31. Delong, E. F., 1992. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences, 89, 5685–5689.CrossRefGoogle Scholar
  32. Dembitsky, V. M., Dor, I., Shkrob, I., and Aki, M., 2001. Branched alkanes and other apolar compounds produced by the cyanobacterium Microcoleus vaginatus from the Negev Desert. Russian Journal of Bioorganic Chemistry, 27, 110–119.CrossRefGoogle Scholar
  33. Derenne, S., Le Berre, F., Largeau, C., Hatcher, P. G., Connan, J., and Raynaud, J. F., 1992. Formation of ultralaminae in marine kerogens via selective preservation of thin resistant outer walls of microalgae. Organic Geochemistry, 19, 345–350.CrossRefGoogle Scholar
  34. Dominé, F., Bounaceur, R., Scacchi, G., Marquaire, P. M., Dessort, D., Pradier, B., and Brevart, O., 2002. Up to what temperature is petroleum stable? new insights from a 5200 free radical reaction model. Organic Geochemistry, 33, 1487–1499.CrossRefGoogle Scholar
  35. Durand, B., 2003. A history of organic geochemistry. Oil & Gas Science and Technology, 58, 203–231.CrossRefGoogle Scholar
  36. Eglinton, G., Scott, P. M., Belsky, T., Burlingame, A. L., and Calvin, M., 1964. Hydrocarbons of a biological origin from a one-billion-year-old sediment. Science, 145, 263–264.CrossRefGoogle Scholar
  37. Eglinton, T. I., and Repeta, D. J., 2004. Organic matter in the contemporary ocean. In Schlesinger, W. H. (ed.), Treatise on Geochemistry (Vol 6). Oxford: Elsevier-Pergamon, pp. 145–180.Google Scholar
  38. Elvert, M., Suess, E., and Whiticar, M. J., 1999. Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften, 31, 1175–1187.Google Scholar
  39. Farrimond, P., Fox, P. A., Innes, H. E., Miskin, I. P., and Head, I. M., 1998. Bacterial sources of hopanoids in recent sediments: improving our understanding of ancient hopane biomarkers. Ancient Biomolecules, 2, 147–166.Google Scholar
  40. Farrimond, P., Head, I. M., and Innes, H. E., 2000. Environmental influence on the biohopanoid composition of recent sediments. Geochimica et Cosmochimica Acta, 64, 2985–2992.CrossRefGoogle Scholar
  41. Fischer, W. W., Summons, R. E., and Pearson, A., 2005. Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology, 3, 33–40.Google Scholar
  42. Fowler, M. G., 1992. The influence of Gloeocapsomorpha prisca on the organic geochemistry of oils and organic-rich rocks of late Ordovician age from Canada. In Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M., and Trudinger, P. A. (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources. Berlin: Springer, pp. 336–356.CrossRefGoogle Scholar
  43. Fowler, M. G., and Douglas, A. G., 1987. Saturated hydrocarbon biomarkers in oils of late Precambrian age from Eastern Siberia. Organic Geochemistry, 11, 201–213.CrossRefGoogle Scholar
  44. Gelin, F., Boogers, I., Noordeloos, A. A. M., Sinninghe Damsté, J. S., Riegman, R., and De Leeuw, J. W., 1997. Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: geochemical implications. Organic Geochemistry, 26, 659–675.CrossRefGoogle Scholar
  45. Graham, J. E., and Bryant, D. A., 2008. The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. Strain PCC 7002. The Journal of Bacteriology, 190, 7966–7974.Google Scholar
  46. Grantham, P. J., and Wakefield, L. L., 1988. Variations in the sterane carbon number distribution of marine source rock derived oils through geological time. Organic Geochemistry, 12, 61–73.CrossRefGoogle Scholar
  47. Grantham, P. J., Lijmbach, G. W. M., Postuma, J., Hughes-Clark, M. W., and Willink, R. J., 1988. Origin of crude oils in Oman. Journal of Petroleum Geology, 11, 61–80.CrossRefGoogle Scholar
  48. Greenwood, P. F., and Summons, R. E., 2003. GC-MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils. Organic Geochemistry, 34, 1211–1222.CrossRefGoogle Scholar
  49. Grice, K., Schaeffer, P., Schwark, L., and Maxwell, J. R., 1996a. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kuperschiefer, Lower Rhine Basin, north-west Germany) from free and S-bound lipids. Organic Geochemistry, 25, 131–147.CrossRefGoogle Scholar
  50. Grice, K., Gibbison, R., Atkinson, J. E., Schwark, L., Eckardt, C. B., and Maxwell, J. R., 1996b. Maleimides (1H-pyrrole-2,5-diones) as molecular indicators of anoxygenic photosynthesis in ancient water columns. Geochimica et Cosmochimica Acta, 60, 3913–3924.CrossRefGoogle Scholar
  51. Grice, K., Schaeffer, P., Schwark, L., and Maxwell, J. R., 1997. Changes in palaeoenvironmental conditions during deposition of the Permian Kupferschiefer (Lower Rhine Basin, northwest Germany) inferred from molecular and isotopic compositions of biomarker components. Organic Geochemistry, 26, 677–690.CrossRefGoogle Scholar
  52. Grice, K., Schouten, S., Peters, K. E., and Sinninghe Damsté, J. S., 1998a. molecular isotopic characterisation of hydrocarbon biomarkers in palaeocene-eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China. Organic Geochemistry, 29, 1745–1764.CrossRefGoogle Scholar
  53. Grice, K., Schouten, S., Nissenbaum, A., Charrach, J., and Sinninghe Damsté, J. S., 1998b. Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation, Dead Sea Basin, Israel. Organic Geochemistry, 28, 349–359.CrossRefGoogle Scholar
  54. Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y., 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307, 706–709.CrossRefGoogle Scholar
  55. Grosjean, E., and Logan, G. A., 2007. Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: examples from Geoscience Australia marine survey S282. Organic Geochemistry, 38, 853.CrossRefGoogle Scholar
  56. Guyomarc’h, F., Binet, A., and Dufossé, L., 2000. Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. Journal of Industrial Microbiology and Biotechnology, V24, 64.CrossRefGoogle Scholar
  57. Hartgers, W. A., Sinninghe Damsté, J. S., Requejo, A. G., Allan, J., Hayes, J. M., Ling, Y., Tiang-Min, X., Primack, J., and De Leeuw, J. W., 1993. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids. Organic Geochemistry, 22, 703–725.CrossRefGoogle Scholar
  58. Harvey, G. R., Sinninghe Damsté, J. S., and De Leeuw, J. W., 1985. On the origin of alkylbenzenes in geochemical samples. Marine Chemistry, 16, 187–188.CrossRefGoogle Scholar
  59. Harvey, H. R., and McManus, G. B., 1991. Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments. Geochimica et Cosmochimica Acta, 55, 3387–3390.CrossRefGoogle Scholar
  60. Hebting, Y., Schaeffer, P., Behrens, A., Adam, P., Schmitt, G., Schneckenburger, P., Bernasconi, S. M., and Albrecht, P., 2006. Biomarker evidence for a major preservation pathway of sedimentary organic carbon. Science, 312, 1627–1631.CrossRefGoogle Scholar
  61. Hedberg, H. D., 1968. Significance of high-wax oils with respect to genesis of petroleum. American Association of Petroleum Geologists Bulletin, 52, 736–750.Google Scholar
  62. Hedges, J. I., Keil, R. G., and Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry, 27, 195–212.CrossRefGoogle Scholar
  63. Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G., and Delong, E. F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–805.CrossRefGoogle Scholar
  64. Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S., 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica et Cosmochimica Acta, 62, 1745–1756.CrossRefGoogle Scholar
  65. Hoering, T. C., 1965. The extractable organic matter in Precambrian rocks and the problem of contamination. Carnegie Institution of Washington Yearbook, 64, 215–218.Google Scholar
  66. Hoffmann, C. F., Foster, C. B., Powell, T. G., and Summons, R. E., 1987. Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochimica et Cosmochimica Acta, 51, 2681–2697.CrossRefGoogle Scholar
  67. Holba, A. G., Tegelaar, E. W., Huizinga, B. J., Moldowan, J. M., Singletary, M. S., McCaffrey, M. A., and Dzou, L. I. P., 1998a. 24-norcholestanes as age-sensitive molecular fossils. Geology, 26, 783–786.CrossRefGoogle Scholar
  68. Holba, A. G., Dzou, L. I. P., Masterson, W. D., Hughes, W. B., Huizinga, B. J., Singletary, M. S., Moldowan, J. M., Mello, M. R., and Tegelaar, E., 1998b. Application of 24-norcholestanes for constraining source age of petroleum. Organic Geochemistry, 29, 1269–1283.CrossRefGoogle Scholar
  69. Höld, I. M., Schouten, S., Jellema, J., and Sinninghe Damsté, J. S., 1999. Origin of free and bound mid-chain methyl alkanes in oil, bitumens and kerogens of the marine, Infracambrian Huqf Formation (Oman). Organic Geochemistry, 30, 1411–1428.CrossRefGoogle Scholar
  70. Holser, W. T., Schidlowski, M., Mackenzie, F. T., and Maynard, J. B., 1988. Biogeochemical cycles of carbon and sulfur. In Gregor, C. B., Garreis, R. M., Mackenzie, F. T., and Maynard, J. B. (eds.), Chemical Cycles in the Evolution of the Earth. New York: Wiley, pp. 105–173.Google Scholar
  71. Huang, Z., Poulter, C. D., Wolf, F. R., Somers, T. C., and White, J. D., 1988. Braunicene, a novel cyclic C32 isoprenoid from Botryococcus braunii. Journal of American Chemical Society, 110, 3959–3964.CrossRefGoogle Scholar
  72. Hunt, J. M., 1979. Petroleum Geochemistry and Geology. San Francisco: Freeman.Google Scholar
  73. Jaffé, R., Mead, R., Hernandez, M. E., Peralba, M. C., and Diguida, O. A., 2001. Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Organic Geochemistry, 32, 507.CrossRefGoogle Scholar
  74. Jahnke, L. L., Summons, R. E., Hope, J. M., and Des Marais, D. J., 1999. Carbon isotopic fractionation in lipids from methanotrophic bacteria II: the effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers. Geochimica et Cosmochimica Acta, 63, 79–93.CrossRefGoogle Scholar
  75. Jenkyns, H. C., Forster, A., Schouten, S., and Sinninghe Damsté, J. S., 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature, 432, 888–892.CrossRefGoogle Scholar
  76. Jiang, N., Tong, Z., Ren, D., Song, F., Yang, D., Zhu, C., and Yijun, G., 1995. The discovery of retene in Precambrian and lower Paleozoic marine formations. Chinese Journal of Geochemistry, 14, 41–51.CrossRefGoogle Scholar
  77. Karner, M. B., Delong, E. F., and Karl, D. M., 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507–510.CrossRefGoogle Scholar
  78. Kenig, F., Sinninghe Damsté, J. S., Kock-Van Dalen, A. C., Rijpstra, W. I. C., Huc, A. Y., and De Leeuw, J. W., 1995. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochimica et Cosmochimica Acta, 59, 2999–3015.CrossRefGoogle Scholar
  79. Kim, J. H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damste, J. S., 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta, 72, 1154.CrossRefGoogle Scholar
  80. Klomp, U. C., 1986. The chemical structure of a pronounced series of iso-alkanes in South Oman Crudes. Organic Geochemistry, 10, 807–814.CrossRefGoogle Scholar
  81. Kohl, W., Gloe, A., and Reichenbach, H., 1983. Steroids from the myxobacterium Nannocystis exedens. Journal of General Microbiology, 129, 1629–1635.Google Scholar
  82. Kohnen, M. E. L., Sinninghe Damsté, J. S., Baas, M., Kock-Van Dalen, A. C., and De Leeuw, J. W., 1993. Sulphur-bound steroid and phytane carbon skeletons in geomacromolecules: implications for the mechanism of incorporation of sulphur into organic matter. Geochimica et Cosmochimica Acta, 57, 2515–2528.CrossRefGoogle Scholar
  83. Koopmans, M. P., Schouten, S., Kohnen, M. E. L., and Sinninghe Damsté, J. S., 1996a. Restricted utility of aryl isoprenoids for photic zone anoxia. Geochimica et Cosmochimica Acta, 60, 4873–4876.CrossRefGoogle Scholar
  84. Koopmans, M. P., Köster, J., Van Kaam-Peters, H. M. E., Kenig, F., Schouten, S., Hartgers, W. A., De Leeuw, J. W., and Sinninghe Damsté, J. S., 1996b. Diagenetic and catagenetic products of isorenieratene: molecular indicators for photic zone anoxia. Geochimica et Cosmochimica Acta, 60, 4467–4496.CrossRefGoogle Scholar
  85. Koopmans, M. P., De Leeuw, J. W., Lewan, M. D., and Sinninghe Damsté, J. S., 1997. Impact of dia- and catagenesis on sulphur and oxygen sequestration of biomarkers as revealed by artificial maturation of an immature sedimentary rock. Organic Geochemistry, 25, 391–426.CrossRefGoogle Scholar
  86. Köster, J., Volkman, J. K., Rullkötter, J., Scholz-Böttcher, B. M., Rethmeier, J., and Fischer, U., 1999. Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum. Organic Geochemistry, 30, 1367–1379.CrossRefGoogle Scholar
  87. Krügel, H., Krubasik, P., Weber, K., Saluz, H. P., and Sandmann, G., 1999. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochimica et Biophysica Acta, 1439, 57–64.CrossRefGoogle Scholar
  88. Kuypers, M. M. M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R. D., Schouten, S., and Sinninghe Damsté, J. S., 2001. Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event. Science, 293, 92–94.CrossRefGoogle Scholar
  89. Kuypers, M. M. M., Blokker, P., Hopmans, E. C., Kinkel, H., Pancost, R. D., Schouten, S., and Sinninghe Damsté, J. S., 2002. archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 211.CrossRefGoogle Scholar
  90. Kvenvolden, K. A., and Hodgson, G. W., 1969. Evidence for porphyrins in early Precambrian Swaziland system sediments. Geochimica et Cosmochimica Acta, 33, 1195–1202.CrossRefGoogle Scholar
  91. Larter, S. R., and Douglas, A. G., 1980. Melanoidins-kerogen precursors geochemical lipid sinks: a study using pyrolysis gas chromatography (PGC). Geochimica et Cosmochimica Acta, 44, 2087–2095.CrossRefGoogle Scholar
  92. Liaaen-Jensen, S., 1979. Carotenoids - a chemosystematic approach. Pure and Applied Chemistry, 51, 661–675.CrossRefGoogle Scholar
  93. Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J., and Summons, R. E., 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457, 718–721.CrossRefGoogle Scholar
  94. Massé, G., Belt, S. T., Rowland, S. J., and Rohmer, M., 2004. Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proceedings of the National Academy of Sciences, 101, 4413–4418.CrossRefGoogle Scholar
  95. Maxwell, J. R., Douglas, A. G., Eglinton, G., and McCormick, A., 1968. The botryococcenes - hydrocarbons of novel structure from the Alga Botryococcus braunii, Kützing. Phytochemistry, 7, 2157.CrossRefGoogle Scholar
  96. Mayer, F. L., Stalling, D. L., and Johnson, J. L., 1972. Phthalate esters as environmental contaminants. Nature, 238, 411.CrossRefGoogle Scholar
  97. McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S., 1994. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic Age petroleum and bitumen. Geochimica et Cosmochimica Acta, 58, 529–532.CrossRefGoogle Scholar
  98. Meinschein, W. G., Barghoorn, E. S., and Schopf, J. W., 1964. Biological remnants in a Precambrian sediment. Science, 145, 262–263.CrossRefGoogle Scholar
  99. Mendeleev, D. I., 1878. Revue Scientifique, 13, 409.Google Scholar
  100. Metzger, P., and Casadevall, E., 1987. Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Letters, 28, 3931.CrossRefGoogle Scholar
  101. Metzger, P., and Largeau, C., 1999. Chemicals of Botryococcus braunii. In Cohen, Z. (ed.), Chemicals from Microalgae. London: Taylor & Francis, pp. 205–260.Google Scholar
  102. Metzger, P., Casadevall, E., Pouet, M. J., and Pouet, Y., 1985. Structures of some Botryococcenes: branched hydrocarbons from the B-race of the green alga Botryococcus braunii. Phytochemistry, 24, 2995–3002.CrossRefGoogle Scholar
  103. Metzger, P., Templier, J., Largeau, C., and Casadevall, E., 1986. An n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii. Phytochemistry, 25, 1869.CrossRefGoogle Scholar
  104. Metzger, P., Largeau, C., and Casadevall, E., 1991. Lipids and macromolecular lipids of the hydrocarbon-rich microalga Botryococcus braunii. chemical structure and biosynthesis. geochemical and biotechnological importance. In Herz, W., Kirby, G. W., Steglich, W., Tamm, C. (eds.), Progress in the Chemistry of Organic Natural Products Vol. 57. Berlin: Springer, pp. 1–70.Google Scholar
  105. Moldowan, J. M., and Talyzina, N. M., 1998. Biogeochemical evidence for dinoflagellate ancestors in the early Cambrian. Science, 281, 1168–1170.CrossRefGoogle Scholar
  106. Moldowan, J. M., Fago, F. J., Lee, C. Y., Jacobson, S. R., Watt, D. S., Slougui, N. E., Jeganathan, A., and Young, D. C., 1990. Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science, 247, 309–312.CrossRefGoogle Scholar
  107. Moldowan, J. M., Dahl, J. E. P., Huizinga, B. J., Fago, F. J., Hickey, L. J., Peakman, T. M., and Taylor, D. W., 1994. The molecular fossil record of oleanane and its relation to angiosperms. Science, 265, 768–771.CrossRefGoogle Scholar
  108. Moldowan, J. M., Dahl, J. E. P., Jacobson, S. R., Huizinga, B. J., Fago, F. J., Shetty, R., Watt, D. S., and Peters, K. E., 1996. Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology, 24, 159–162.CrossRefGoogle Scholar
  109. Nichols, P. D., Volkman, J. K., Palmisano, A. C., Smith, G. A., and White, D. C., 1988. Occurrence of an isoprenoid C25 di-unsaturated alkene and high neutral lipid content in Antarctic sea-ice diatom communities. Journal of Phycology, 24, 90–96.CrossRefGoogle Scholar
  110. Nip, M., Tegelaar, E. W., Brinkhuis, H., De Leeuw, J. W., Schenck, P. A., and Holloway, P. J., 1986. Analysis of modern and fossil plant cuticles by curie-point Py-GC and curiepoint Py-GC-MS: recognition of a new highly aliphatic and resistant biopolymer. Organic Geochemistry, 10, 769–778.CrossRefGoogle Scholar
  111. Noble, R. A., Alexander, R., Kagi, R. I., and Knox, J., 1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochimica et Cosmochimica Acta, 49, 2141–2147.CrossRefGoogle Scholar
  112. Oren, A., 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28, 56.Google Scholar
  113. Oró, J., and Nooner, D. W., 1967. Aliphatic hydrocarbons in Pre-cambrian rocks. Nature, 213, 1082–1085.CrossRefGoogle Scholar
  114. Ourisson, G., and Albrecht, P., 1992. Hopanoids 1. Geohopanoids: the most abundant natural products on Earth? Accounts of Chemical Research, 25, 398–402.CrossRefGoogle Scholar
  115. Ourisson, G., Rohmer, M., and Poralla, K., 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology, 41, 301–333.CrossRefGoogle Scholar
  116. Pancost, R. D., Freeman, K. H., Patzkowsky, E., Wavrek, D. A., and Collister, J. W., 1998. Molecular indicators of redox and marine photoautotroph composition in the late Middle Ordovician of Iowa, U.S.A. Organic Geochemistry, 29, 1649–1662.CrossRefGoogle Scholar
  117. Pancost, R. D., Crawford, N., and Maxwell, J. R., 2002. Molecular evidence for basin-scale photic zone euxinia in the Permian Zechstein Sea. Chemical Geology, 188, 217–227.CrossRefGoogle Scholar
  118. Pearson, A., Budin, M., and Brocks, J. J., 2003. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proceedings of the National Academy of Sciences, 100, 15352–15357.CrossRefGoogle Scholar
  119. Pearson, A., Flood Page, S. R., Jorgenson, T. L., Fischer, W. W., and Higgins, M. B., 2007. Novel hopanoid cyclases from the environment. Environmental Microbiology, 9, 2175–2188.CrossRefGoogle Scholar
  120. Pepper, A. S., and Dodd, T. A., 1995. Simple kinetic models of petroleum formation. Part II: oil-gas cracking. Marine and Petroleum Geology, 12, 321–340.CrossRefGoogle Scholar
  121. Peters, K. E., and Moldowan, J. M., 1993. The Biomarker Guide. Englewood Cliffs: Prentice Hall.Google Scholar
  122. Peters, K. E., Walters, C. C., and Moldowan, J. M., 2004. The Biomarker Guide. Englewood Cliffs: New Jersey.CrossRefGoogle Scholar
  123. Philippi, G. T., 1965. On the depth, time and mechanism of petroleum generation. Geochimica et Cosmochimica Acta, 29, 1021–1049.CrossRefGoogle Scholar
  124. Putschew, A., Schaeffer, P., Schaeffer-Reiss, C., and Maxwell, J. R., 1998. Carbon isotope characteristic of the diaromatic carotenoid, isorenieratene (intact and sulfide bound) and a novel isomer in sediments. Organic Geochemistry, 28, 1849–1856.CrossRefGoogle Scholar
  125. Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W., Baker, B. J., Blake, R. C. II, Shah. M., Hettich, R. L., and Banfield, J. F., 2005. Community proteomics of a natural microbial biofilm. Science, 308, 1915–1920.CrossRefGoogle Scholar
  126. Rashby, S. E., Sessions, A. L., Summons, R. E., and Newman, D. K., 2007. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences, 104, 15099–15104.CrossRefGoogle Scholar
  127. Requejo, A. G., Creaney, S., Allan, J., Gray, N. R., and Cole, K. S., 1992. Aryl isoprenoids and diaromatic carotenoids in paleozoic source rocks and oils from the Western Canada and Williston Basins. Organic Geochemistry, 19, 245–264.CrossRefGoogle Scholar
  128. Robinson, N., Eglinton, G., and Brassell, S. C., 1984. Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature, 308, 439–442.CrossRefGoogle Scholar
  129. Rohmer, M., Bouvier-Navé, P., and Ourisson, G., 1984. Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology, 130, 1137–1150.Google Scholar
  130. Rowland, S. J., Yon, D. A., Lewis, C. A., and Maxwell, J. R., 1985. Occurrence of 2,6,10-trimethyl-7-(3-methylbutyl)-dodecane and related hydrocarbons in the green alga Enteromorpha prolifera and sediments. Organic Geochemistry, 8, 207.CrossRefGoogle Scholar
  131. Schaeffer, P., Reiss, C., and Albrecht, P., 1995. Geochemical study of macromolecular organic matter from sulfur-rich sediments of evaporitic origin (Messinian of Sicily) by chemical degradations. Organic Geochemistry, 23, 567–581.CrossRefGoogle Scholar
  132. Schaeffer, P., Adam, P., Wehrung, P., and Albrecht, P., 1997. Novel aromatic carotenoid derivatives from sulfur photosynthetic bacteria in sediments. Tetrahedron Letters, 38, 8413–8416.CrossRefGoogle Scholar
  133. Schouten, S., Van Der Maarel, M. J., Huber, R., and Sinninghe Damsté, J. S., 1997. 2,6,10,15,19-pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon, and in Methanosarcina mazei. Organic Geochemistry, 26, 409–414.CrossRefGoogle Scholar
  134. Schouten, S., Hopmans, E. C., Schefuss, E., and Sinninghe Damsté, J. S., 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204, 265–274.CrossRefGoogle Scholar
  135. Schouten, S., Hopmans, E. C., Forster, A., Van Breugel, Y., Kuenen, J. G., and Sinninghe Damsté, J. S., 2003. Extremely high sea-surface temperatures at low latitudes during the Middle Cretaceous as revealed by archaeal membrane lipids. Geology, 31, 1069–1072.CrossRefGoogle Scholar
  136. Schouten, S., Forster, A., Panoto, F. E., and Sinninghe Damsté, J. S., 2007. Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds. Organic Geochemistry, 38, 1537.CrossRefGoogle Scholar
  137. Shiea, J., Brassell, S. C., and Ward, D. M., 1990. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: a direct biogenic source for branched alkanes in ancient sediments? Organic Geochemistry, 15, 223–231.CrossRefGoogle Scholar
  138. Simons, D. J. H., and Kenig, F., 2001. Molecular fossil constraints on the water column structure of the Cenomanian-Turonian Western Interior Seaway, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 169, 129–152.CrossRefGoogle Scholar
  139. Sinninghe Damsté, J. S., and De Leeuw, J. W., 1990. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Organic Geochemistry, 16, 1077–1101.CrossRefGoogle Scholar
  140. Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., and De Leeuw, J. W., 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59, 1895–1900.CrossRefGoogle Scholar
  141. Sinninghe Damsté, J. S., Schouten, S., and Van Duin, A. C. T., 2001. Isorenieratene derivatives in sediments: possible controls on their distribution. Geochimica et Cosmochimica Acta, 65, 1557–1571.CrossRefGoogle Scholar
  142. Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Prahl, F. G., Wakeham, S. G., and Schouten, S., 2002. Distribution of membrane lipids of planktonic crenarchaeota in the Arabian Sea. Applied and Environmental Microbiology, 68, 2997–3002.CrossRefGoogle Scholar
  143. Sinninghe Damsté, J. S., Rijpstra, W. I. C., Schouten, S., Fuerst, J. A., Jetten, M. S. M., and Strous, M., 2004a. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Organic Geochemistry, 35, 561–566.CrossRefGoogle Scholar
  144. Sinninghe Damsté, J. S., Muyzer, G., Abbas, B., Rampen, S. W., Massé, G., Allard, W. G., Belt, S. T., Robert, J. M., Rowland, S. J., Moldowan, J. M., Barbanti, S. M., Fago, F. J., Denisevich, P., Dahl, J., Trindade, L. A. F., and Schouten, S., 2004b. The rise of the rhizosolenid diatoms. Science, 304, 584–587.CrossRefGoogle Scholar
  145. Sinninghe Damsté, J. S., Baas, M., Geenevasen, J. A. J., and Kenig, F., 2005. Structural identification of sedimentary C21 and C22 highly branched isoprenoid alkanes. Organic Geochemistry, 36, 511–517.CrossRefGoogle Scholar
  146. Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G. J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and The Expedition Scientists, 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 441, 610.CrossRefGoogle Scholar
  147. Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichart, G. J., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens, G. R., 2007. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 450, 1218.CrossRefGoogle Scholar
  148. Summons, R. E., and Capon, R. J., 1988. Fossil steranes with unprecedented methylation in ring-A. Geochimica et Cosmochimica Acta, 52, 2733–2736.CrossRefGoogle Scholar
  149. Summons, R. E., and Jahnke, L. L., 1992. Hopenes and hopanes methylated in ring-A: correlation of the hopanoids from extant methylotrophic bacteria with their fossil analogues. In Moldowan, J. M., Albrecht, P., and Philip, R. P. (eds.), Biological Markers in Sediments and Petroleum. Englewood Cliffs, NJ: Prentice Hall, pp. 182–200.Google Scholar
  150. Summons, R. E., and Powell, T. G., 1986. Chlorobiaceae in paleozoic seas revealed by biological markers, isotopes and geology. Nature, 319, 763–765.CrossRefGoogle Scholar
  151. Summons, R. E., and Powell, T. G., 1987. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochimica et Cosmochimica Acta, 51, 557–566.CrossRefGoogle Scholar
  152. Summons, R. E., and Powell, T. G., 1992. hydrocarbon composition of the late Proterozoic oils of the Siberian Platform: implications for the depositional environment of source rocks. In Schidlowski, M., Golubic, S., Kimberley, M. M., and Trudinger, P. A. (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources. Berlin: Springer, pp. 296–307.CrossRefGoogle Scholar
  153. Summons, R. E., and Walter, M. R., 1990. Molecular fossils and microfossils of prokaryotes and protists from proterozoic sediments. American Journal of Science, 290-A, 212–244.Google Scholar
  154. Summons, R. E., Powell, T. G., and Boreham, C. J., 1988. Petroleum geology and geochemistry of the middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochimica et Cosmochimica Acta, 52, 1747–1763.CrossRefGoogle Scholar
  155. Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A., 1999. 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–557.CrossRefGoogle Scholar
  156. Summons, R. E., Metzger, P., Largeau, C., Murray, A. P., and Hope, J. M., 2002. Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and oils. Organic Geochemistry, 33, 99–109.CrossRefGoogle Scholar
  157. Summons, R. E., Bradley, A. S., Jahnke, L. L., and Waldbauer, J. R., 2006. Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 951.CrossRefGoogle Scholar
  158. Summons, R. E., Thomas, J., Maxwell, J. R., and Boreham, C. J., 1992. Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochim. Cosmochim. Acta, 56, 2437–2444.CrossRefGoogle Scholar
  159. Summons, R. E., Volkman, J. K., and Boreham, C. J., 1987. Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum. Geochim. Cosmochim. Acta, 51, 3075–3082.CrossRefGoogle Scholar
  160. Talyzina, N. M., Moldowan, J. M., Johannisson, A., and Fago, F. J., 2000. Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Review of Palaeobotany and Palynology, 108, 37–53.CrossRefGoogle Scholar
  161. Tegelaar, E. W., De Leeuw, J. W., Derenne, S., and Largeau, C., 1989. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta, 53, 3103–3106.CrossRefGoogle Scholar
  162. Tegelaar, E. W., Hollman, G., Van Der Vegt, P., De Leeuw, J. W., and Holloway, P. J., 1995. Chemical characterization of the periderm tissue of some angiosperm species: recognition of an insoluble, non-hydrolyzable, aliphatic biomacromolecule (Suberan). Organic Geochemistry, 23, 239–251.CrossRefGoogle Scholar
  163. Ten Haven, H. L., Rohmer, M., Rullkötter, J., and Bisseret, P., 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochimica et Cosmochimica Acta, 53, 3073–3079.CrossRefGoogle Scholar
  164. Thiel, V., Peckmann, J., Seifert, R., Wehrung, P., Reitner, J., and Michaelis, W., 1999. Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochimica et Cosmochimica Acta, 63, 3959–3966.CrossRefGoogle Scholar
  165. Tissot, B. P., and Welte, D. H., 1984. Petroleum Formation and Occurrence. Berlin: Springer.Google Scholar
  166. Treibs, A., 1936. Chlorophyll and hemin derivatives in organic mineral substances. Angewandte Chemie, 49, 682–686.CrossRefGoogle Scholar
  167. Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., and Banfield, J. F., 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428, 37–43.CrossRefGoogle Scholar
  168. Tyson, R. V., 1995. Sedimentary Organic Matter. Organic Facies and Palynofacies, New York: Chapman and Hall, pp. 309–315.CrossRefGoogle Scholar
  169. Van Aarssen, B. G. K., Cox, H. C., Hoogendoorn, P., and De Leeuw, J. W., 1990. A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia. Geochimica et Cosmochimica Acta, 54, 3021–3031.CrossRefGoogle Scholar
  170. Van Aarssen, B. G. K., Hessels, J. K. C., Abbink, O. A., and De Leeuw, J. W., 1992. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from Southeast Asia. Geochimica et Cosmochimica Acta, 56, 1231–1246.CrossRefGoogle Scholar
  171. Vernadsky, V. I., 1934. Outlines of geochemistry ONTI. Gornogeolog. Neft. Izd. Google Scholar
  172. Versteegh, G. J. M., Blokker, P., Wood, G. D., Collinson, M. E., Sinninghe Damsté, J. S., and De Leeuw, J. W., 2004. An example of oxidative polymerization of unsaturated fatty acids as a preservation pathway for dinoflagellate organic matter. Organic Geochemistry, 35, 1129–1139.CrossRefGoogle Scholar
  173. Villar, H. J., Püttmann, W., and Wolf, M., 1988. Organic geochemistry and petrography of tertiary coals and carbonaceous shales from Argentina. Organic Geochemistry, 13, 1011–1021.CrossRefGoogle Scholar
  174. Vink, A., Schouten, S., Sephton, S., and Sinninghe Damsté, J. S., 1998. A newly discovered norisoprenoid, 2,6,15,19-tetramethylicosane, in Cretaceous black shales. Geochimica et Cosmochimica Acta, 62, 965–970.CrossRefGoogle Scholar
  175. Volkman, J. K., 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9, 83–99.CrossRefGoogle Scholar
  176. Volkman, J. K., 2003. Sterols in microorganisms. Applied Microbiology and Biotechnology, 60, 496–506.Google Scholar
  177. Volkman, J. K., Barrett, S. M., Dunstan, G. A., and Jeffrey, S. W., 1993. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Organic Geochemistry, 20, 7–15.CrossRefGoogle Scholar
  178. Volkman, J. K., Barrett, S. M., and Dunstan, G. A., 1994. C25 and C30 highly branched isoprenoid alkanes in laboratory cultures of two marine diatoms. Organic Geochemistry, 21, 407–413.CrossRefGoogle Scholar
  179. Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L., and Gelin, F., 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29, 1163–1179.CrossRefGoogle Scholar
  180. Wakeham, S. G., Sinninghe Damsté, J. S., Kohnen, M. E. L., and De Leeuw, J. W., 1995. Organic sulfur compounds formed during early diagenesis in Black Sea sediments. Geochimica et Cosmochimica Acta, 59, 521–533.CrossRefGoogle Scholar
  181. Wang, T. G., and Simoneit, B. R. T., 1990. Organic geochemistry and coal petrology of tertiary brown coal in the Zhoujing Mine, Baise Basin, South China. 2. biomarker assemblage and significance. Fuel, 69, 12–20.CrossRefGoogle Scholar
  182. Ward, A. C., and Bora, N., 2006. Diversity and biogeography of marine actinobacteria. Current Opinion in Microbiology, 9, 279–286.CrossRefGoogle Scholar
  183. Wen, Z., Ruiyong, W., Radke, M., Qingyu, W., Guoying, S., and Zhili, L., 2000. Retene in pyrolysates of algal and bacterial organic matter. Organic Geochemistry, 31, 757–762.CrossRefGoogle Scholar
  184. Zumberge, J. E., 1987. Terpenoid biomarker distributions in low maturity crude oils. Organic Geochemistry, 11, 479.CrossRefGoogle Scholar
  185. Zundel, M., and Rohmer, M., 1985a. Prokaryotic triterpenoids 1. 3-methylhopanoids from Acetobacter sp. and Methylococcus capsulatus. European Journal of Biochemistry, 150, 23–27.CrossRefGoogle Scholar
  186. Zundel, M., and Rohmer, M., 1985b. Prokaryotic triterpenoids 3. the biosynthesis of 2β-methylhopanoids and 3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus spp. pasteurianus. European Journal of Biochemistry, 150, 35–39.CrossRefGoogle Scholar
  187. Zundel, M., and Rohmer, M., 1985c. Hopanoids of the methylotrophic bacteria Methylococcus capsulatus and Methylomonas sp. as possible precursors for the C29 and C30 hopanoid chemical fossils. FEMS Microbiology Letters, 28, 61–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jochen J. Brocks
    • 1
  • Kliti Grice
    • 2
  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  2. 2.WA Organic and Isotope Geochemistry Centre, Deparment of Applied ChemistryCurtin University of TechnologyPerthAustralia