Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Microbiocorrosion

  • Aline Tribollet
  • Stjepko Golubic
  • Gudrun Radtke
  • Joachim Reitner
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_23

Definition

Destruction of rocks and minerals by biological activities has been termed bioerosion (Neumann, 1966). It includes mechanical as well as chemical effects, that is, bioabrasion and biocorrosion (Schneider, 1976; Golubic and Schneider, 1979). However, both the processes often co-occur; they are functionally interconnected and mutually supportive. Biocorrosion can result from the activity of macro- or microorganisms and, thus, is called macrobiocorrosion and microbiocorrosion. Microbiocorrosion can also be closely associated with microbial rock formation and consolidation in stromatolitic structures (Reid et al., 2000; Macintyre et al., 2000; Garcia-Pichel et al., 2004; Dupraz and Visscher, 2005). In fact, the oldest known fossils of microboring organisms were located in lithified horizons of silicified stromatolites (Zhang and Golubic, 1987).

Keywords

Biological Activity Chemical Effect Rock Formation Microboring Organism Stromatolitic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. Dupraz, C., and Visscher, P. T., 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–338.CrossRefGoogle Scholar
  2. Garcia-Pichel, F., Al-Horani, F., Ludwig, R., Farmer, J., and Wade, B., 2004. Balance between calcification and bioerosion in modern stromatolites. Geobiology, 2, 49–57.CrossRefGoogle Scholar
  3. Golubic, S., and Schneider, J., 1979. Carbonate dissolution. In Trudinger, P. A., and Swaine, D. J. (eds.), Biogeochemical Cycling of Mineral-Forming Elements. Amsterdam: Elsevier, pp. 107–129.CrossRefGoogle Scholar
  4. Macintyre, I. G., Prufert-Bebout, L., and Reid, R. P., 2000. The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology, 47, 915–921.CrossRefGoogle Scholar
  5. Neumann, A. C., 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnology and Oceanography, 11, 92–108.CrossRefGoogle Scholar
  6. Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C. P., Macintyre, I. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and DesMarais, D. J., 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992.CrossRefGoogle Scholar
  7. Schneider, J., 1976. Biological and inorganic factors in the destruction of limestone coasts. Contributions to Sedimentology, 6, 1–112.Google Scholar
  8. Zhang, Y., and Golubic, S., 1987. Endolithic microfossils (cyanophyta) from early Proterozoic stromatolites, Hebei, China. Acta Micropaleont Sinica, 4, 1–12.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Aline Tribollet
    • 1
  • Stjepko Golubic
    • 2
  • Gudrun Radtke
    • 3
  • Joachim Reitner
    • 4
  1. 1.Institut de Recherche pour le DéveloppementNouméaFrance
  2. 2.Department of BiologyBoston UniversityBostonUSA
  3. 3.Hessisches Landesamt für Umwelt und GeologieWiesbadenGermany
  4. 4.Geobiology Group Geoscience CenterUniversity of GöttingenGöttingenGermany