Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Acetogens

  • Kirsten Küsel
  • Harold L. Drake
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_2

Synonyms

Homoacetogens

Definition

Acetogens are defined as anaerobic prokaryotes that use the acetyl-CoA pathway for the (a) reductive synthesis of the acetyl moiety of acetyl-CoA from CO2, (b) conservation of energy, and (c) assimilation of CO2 into biomass.

Introduction

Acetogens utilize the acetyl-CoA “Wood–Ljungdahl” pathway as a terminal electron-accepting, energy-conserving, CO2-fixing process. The reductive synthesis of acetate from CO2 differentiates acetogens from organisms that synthesize acetate by other metabolic processes. Although the production of acetate as a sole reduced end product is the classic hallmark of acetogens, the production of acetate is not a part of the definition, because the acetogen might not form acetate in situ or when cultured in the laboratory.

The first acetogen, Clostridium aceticum, was isolated from soil by the Dutch microbiologist K. T. Wieringa in 1936. This spore-forming, mesophilic bacterium was shown to grow at the expense of H 2–CO 2and...

Keywords

Biomass Cellulose Fermentation Lignin Superoxide 
This is a preview of subscription content, log in to check access

Bibliography

  1. Andreesen, J. R., and Ljungdahl, L. G., 1973. Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. The Journal of Bacteriology, 116, 867–873.Google Scholar
  2. Balk, M., van Gelder, T., Weelink, S. A., and Stams, A. J. M., 2008. (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Applied and Environmental Microbiology, 74, 403–409.CrossRefGoogle Scholar
  3. Barker, H. A., and Kamen, M. D., 1945. Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proceedings of the National Academy of Sciences of the United States of America, 31, 219–225.CrossRefGoogle Scholar
  4. Braun, M., Mayer, F., and Gottschalk, G., 1981. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Archives of Microbiology, 128, 288–293.CrossRefGoogle Scholar
  5. Breznak, J. A., and Kane, M. D., 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiology Reviews, 7, 309–313.CrossRefGoogle Scholar
  6. Byrer, D. E., Rainey, F. A., and Wiegel, J., 2000. Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Archives of Microbiology, 174, 334–339.CrossRefGoogle Scholar
  7. Conrad, R., Bak, F., Seitz, H. J., Thebrath, B., Mayer, H. P., and Schütz, H., 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiology Ecology, 62, 285–294.CrossRefGoogle Scholar
  8. Das, A., Coulter, E. D., Kurtz, D. M., and Ljungdahl, L. G., 2001. Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase-rubredoxin and rubrerythrin-type A flavoprotein-high-molecular-weight rubredoxin. The Journal of Bacteriology, 183, 1560–1567.CrossRefGoogle Scholar
  9. Das, A., Silaghi-Dumitrescu, R., Ljungdahl, L. G., and Kurtz, D. M., Jr., 2005. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. The Journal of Bacteriology, 187, 2020–2029.CrossRefGoogle Scholar
  10. Drake, H. L. 1994. Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In Drake, H. L. (ed.), Acetogenesis. New York: Chapman & Hall, pp. 3–60.CrossRefGoogle Scholar
  11. Drake, H. L., and Daniel, S. L., 2004. Physiology of the thermophilic acetogen Moorella thermoacetica. Research in Microbiology, 155, 869–883.CrossRefGoogle Scholar
  12. Drake, H. L., and Küsel, K., 2005. Acetogenic clostridia. In Dürre, P. (ed.), Handbook on Clostridia. Boca Raton, FL: CRC Press, pp. 719–746.Google Scholar
  13. Drake, H. L., Küsel, K., and Matthies, C., 2006. Acetogenic prokaryotes. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds.), The Prokaryotes, Vol. 2. New York: Springer-Verlag, pp. 354–420.CrossRefGoogle Scholar
  14. Drake, H. L., Gößner, A. S., and Daniel, S. L., 2008. Old acetogens, new light. Annals New York Academy of Sciences, 1125, 100–128.CrossRefGoogle Scholar
  15. Fontaine, F. E., Peterson, W. H., McCoy, E., and Johnson, M. J., 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. The Journal of Bacteriology, 43, 701–715.Google Scholar
  16. Gößner, A. S., Devereux, R., Ohnemüller, N., Acker, G., Stackebrandt, E., and Drake, H. L., 1999. Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a fermentative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica. Applied and Environmental Microbiology, 65, 5124–5133.Google Scholar
  17. Henstra, A. M., Dijkema, C., and Stams, A. J. M., 2008. Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environmental Microbiology, 9, 1836–1841.CrossRefGoogle Scholar
  18. Küsel, K., Pinkart, H. C., Drake, H. L., and Devereux, R., 1999. Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deeper cortex cells of the sea grass Halodule wrightii. Applied and Environmental Microbiology, 65, 5117–5123.Google Scholar
  19. Küsel, K., Karnholz, A., Trinkwalter, T., Devereux, R., Acker, G., and Drake, H. L., 2001. Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Applied and Environmental Microbiology, 67, 4734–4741.CrossRefGoogle Scholar
  20. Leaphart, A. B., Friez, M. J., and Lovell, C. R., 2003. Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Applied and Environmental Microbiology, 69, 693–696.CrossRefGoogle Scholar
  21. Lessner, D. J., Li, L., Li, Q., Rejtar, T., Andreev, V. P., Reichlen, M., Hill, K., Moran, J. J., Karger, B. L., and Ferry, J. G. 2006. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proceedings of the National Academy of Science of the United States of America, 103, 17921–17926.CrossRefGoogle Scholar
  22. Ljungdahl, L. G., 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annual Reviews of Microbiology, 40, 415–450.CrossRefGoogle Scholar
  23. Miyakawa, S., Yamanashi, H., Kobayashi, K., Cleaves, H. J., and Miller, S. L., 2002. Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proceedings of the National Academy of Science of the United States of America, 99, 14628–14631.CrossRefGoogle Scholar
  24. Müller, V., Inkamp, F., Rauwolf, A., Küsel, K., and Drake, H. L., 2004. Molecular and cellular biology of acetogenic bacteria. In Nakano, M., and Zuber, P. (eds.), Strict and Facultative Anaerobes: Medical and Environmental Aspects. Norfolk, UK: Horizon Scientific Press, pp. 251–281.Google Scholar
  25. Rother, M., and Metcalf, W. W., 2004. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proceedings of the National Academy of Science of the United States of America, 101, 16929–16934.CrossRefGoogle Scholar
  26. Russell, M. J., and Martin, W., 2004. The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29, 358–363.CrossRefGoogle Scholar
  27. Schouten, S., Strous, M., Kuypers, M. M. M., Irene, W., Rijpstra, C., Baas, M., Schubert, C. J., Jetten, M. S. M., and Damste, J. S. S., 2004. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 70, 3785–3788.CrossRefGoogle Scholar
  28. Seifritz, C., Daniel, S. L., Gößner, A., and Drake, H. L., 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. The Journal of Bacteriology, 175, 8008–8013.Google Scholar
  29. Wieringa, K. T., 1939–1940. The Formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie Van Leeuwenhoek Journal of Microbiology and Serology, 6, 251–262.CrossRefGoogle Scholar
  30. Wood, H. G. 1952. A study of carbon dioxide fixation by mass determination on the types of C13-acetate. Journal of Biological Chemistry, 194, 905–931.Google Scholar
  31. Wood, H. G. 1991. Life with CO or CO2 and H2 as a source of carbon and energy. Journal of the Federation of American Societies for Experimental Biology, 5, 156–163.Google Scholar
  32. Wood, H. G., and Ljungdahl, L. G., 1991. Autotrophic character of acetogenic bacteria. In Shively, J. M., and Barton, L. L. (eds.), Variations in Autotrophic Life. San Diego, CA: Academic, pp. 201–250.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kirsten Küsel
    • 1
  • Harold L. Drake
    • 2
  1. 1.Institute of EcologyFriedrich Schiller University JenaJenaGermany
  2. 2.Department of Ecological MicrobiologyUniversity of BayreuthBayreuthGermany