Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Sulfide Mineral Oxidation

  • D. Kirk Nordstrom
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_198

Synonyms

Sulfide-mineral weathering; Sulfide-ore oxidation

Definition

Sulfide mineral. A metal-sulfide compound, such as pyrite (FeS2), which forms at high temperature (>50°C) in well-crystallized veins or masses and at low temperatures (<50°C) in poorly crystalline and fine-grained particles.

Oxidation. The chemical process of reacting with oxygen. More generally, the chemical process of removing electrons from an atom or group of atoms.

Introduction

Metal-sulfide minerals are valuable as ores for metals that have a wide variety of uses from jewelry to components in vehicles and electronic equipment. They are found primarily in hydrothermal mineral deposits that occur in numerous geologic environments. The most common sulfide mineral is pyrite; other important sulfide ore minerals include chalcopyrite (copper ore), molybdenite (molybdenum ore), sphalerite (zinc ore), galena (lead ore), and cinnabar (mercury ore). When these minerals are exposed to weathering at the Earth’s surface,...

Keywords

Ferrous Iron Sulfide Mineral Hydrous Ferric Oxide Acidithiobacillus Ferrooxidans Reduce Sulfur Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Bond, P. L., Druschel, G. K., and Banfield, J. F., 2000. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology, 66, 4962–4971.CrossRefGoogle Scholar
  2. Colmer, A. R., and Hinkle, M. E., 1947. The role of microorganisms in acid mine drainage. Science, 106, 253–256.CrossRefGoogle Scholar
  3. Edwards, K. J., Bond, P. L., Gihring, T. M., and Banfield, J. F., 2000. An archaeal Fe-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.CrossRefGoogle Scholar
  4. Ehrlich, H. L., 2002. Geomicrobiology, 4th edn. New York: Marcel Dekker.CrossRefGoogle Scholar
  5. Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat’eva, T. F., Moore, R. B., Abraham, W. R., Lunsdorf, H., Timmis, K. N., Yakimov, M. M., and Golyshin, P. N., 2000. Ferroplasma acidiphilum, gen. nov., sp. Nov., an acidophilic, autotrophic, ferrous-Fe-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam., comprising a distinct lineage of the Archaea. International Journal of Systematic and Evolutionary Biology, 50, 997–1006.CrossRefGoogle Scholar
  6. Nordstrom, D. K., 2009. Acid rock drainage and climate change. Journal of Geochemical Exploration, 100, 97–104.CrossRefGoogle Scholar
  7. Nordstrom, D. K., and Alpers, C. N., 1999. Geochemistry of acid mine waters. In Plumlee, G. S., and Logsdon, M. J. (eds.), The Environmental Geochemistry of Mineral Deposits. Part A. Processes, Methods and Health Issues, Reviews in Economic Geology, Littleton, CO: Society of Economic Geology, Vol. 6A, pp. 133–160.Google Scholar
  8. Nordstrom, D. K., and Southam, G., 1997. Geomicrobiology of sulfide mineral oxidation. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy 35. Washington, DC: Mineralogical Society of America, pp. 361–390.Google Scholar
  9. Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., and Blowes, D. W., 2000. Negative pH and extremely acidi waters from Iron Mountain, California. Environmental Science and Technology, 34, 254–258.CrossRefGoogle Scholar
  10. Norris, P. R., 1990. Acidophilic bacteria and their activity in sulfide mineral oxidation. In Ehrlich, H. L., and Brierley, C. L. (eds.), Microbial Mineral Recovery. New York: McGraw-Hill, pp. 3–27.Google Scholar
  11. Rawlings, D. E., Tributsch, H., and Hansford, G. S., 1999. Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant Fe-oxidizing bacteria in many commercial processes for biooxidation of pyrite and related ores. Microbiology, 145, 5–13.CrossRefGoogle Scholar
  12. Rudolfs, A., and Helbronner, A., 1922. Oxidation of zinc sulfide by microorganisms. Soil Science, 14, 459–464.CrossRefGoogle Scholar
  13. Winogradsky, S. N., 1888. Über Eisenbakterien. Botanische Zeitung, 46, 261–276.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • D. Kirk Nordstrom
    • 1
  1. 1.U.S. Geological SurveyBoulderUSA