Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Thomas Pommier
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_18


Aquatic bacteria


Bacterial component of the plankton that drifts in the water column of both seawater and freshwater ecosystems.


The name bacterioplankton comes from the association of the Greek word πλαγκτος  “planktós,” meaning “wanderer” or “drifter,” and bacterium, a word coined in the nineteenth century by Christian Gottfried Ehrenberg (Thurman, 1997). In contrast to land, microbes drive the ecology of the aquatic environments both as producers and consumers of fixed carbon. Their colossal biomass vastly outreaches the ones of all other members of the oceanic and freshwaters biota. Considering its size, the Ocean encompasses more bacteria than the count of known stars (estimated to 1021) in the Universe. Though its role in aquatic ecosystems was for long eluded, the bacterioplankton carries out the largest fraction of the biological activity and occupies a range of ecological niches.

Enumeration and description

Since the beginning of microbiology,...


Dissolve Organic Matter Dissolve Organic Matter Bacterioplankton Community Heterotrophic Bacterioplankton Oceanic Primary Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Acinas, S. G., Anton, J., and Rodriguez-Valera, F., 1999. Diversity of free-living and attached bacteria in offshore western mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Applied and Environmental Microbiology, 65, 514–522.Google Scholar
  2. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology, 56, 1919–1925.Google Scholar
  3. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257–263.CrossRefGoogle Scholar
  4. Beja, O., Spudich, E. N., Spudich, J. L., Leclerc, M., and DeLong, E. F., 2001. Proteorhodopsin phototrophy in the ocean. Nature, 411, 786–789.CrossRefGoogle Scholar
  5. Chin-Leo, G., and Kirchman, D. L., 1988. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Applied and Environmental Microbiology, 54, 1934–1939.Google Scholar
  6. Cottrell, M. T., and Kirchman, D. L., 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Applied and Environmental Microbiology, 66, 5116–5122.CrossRefGoogle Scholar
  7. del Giorgio, P. A., and Duarte, C. M., 2002. Respiration in the open ocean. Nature, 420, 379–384.CrossRefGoogle Scholar
  8. Eilers, H., Pernthaler, J., Peplies, J., Glockner, F. O., Gerdts, G., and Amann, R., 2001. Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Applied and Environmental Microbiology, 67, 5134–5142.CrossRefGoogle Scholar
  9. Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B. III, Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and Steffen, W., 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science, 290, 291–296.CrossRefGoogle Scholar
  10. Fenchel, T., King, G. M., and Blackburn, T. H., 1998. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. London: Academic.Google Scholar
  11. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., et al., 1980. The phylogeny of prokaryotes. Science, 209, 457–463.CrossRefGoogle Scholar
  12. Fuhrman, J. A., and Azam, F., 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Marine Biology, 66, 109–120.CrossRefGoogle Scholar
  13. Fuhrman, J. A., Ferguson, R. I., 1986. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. Marine Ecology Progress Series, 33, 237–242.CrossRefGoogle Scholar
  14. Giovannoni, S. J., Rappé, M. S., Vergin, K. L., and Adair, N. L., 1996. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria. Proceedings of the National Academy of Sciences of the United States of America, 93, 7979–7984.CrossRefGoogle Scholar
  15. González, J. M., and Moran, M. A., 1997. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class proteobacteria in coastal seawater. Applied and Environmental Microbiology, 63, 4237–4242.Google Scholar
  16. Gordon, D. A., and Giovannoni, S. J., 1996. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans. Applied and Environmental Microbiology, 62, 1171–1177.Google Scholar
  17. Hagström, Å., Larsson, U., Hörstedt, P., and Normark, S., 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Applied and Environmental Microbiology, 37, 805–812.Google Scholar
  18. Hobbie, J. E., Daley, R. J., and Jasper, S., 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33, 1225–1228.Google Scholar
  19. Hollibaugh, J. T., Bano, N., and Ducklow, H. W., 2002. Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrospira-like ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68, 1478–1484.CrossRefGoogle Scholar
  20. Hoppe, H. G., 1976. Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography. Marine Biology, 36, 291–302.CrossRefGoogle Scholar
  21. Jannasch, H. W., and Jones, G. E., 1959. Bacterial populations in sea water as determined by different methods of enumeration. Limnology and Oceanography, 4, 128–139.CrossRefGoogle Scholar
  22. Kjelleberg, S., Hermansson, M., Mården, P., and Jones, G. W., 1987. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annual Review of Microbiology, 41, 25–49.CrossRefGoogle Scholar
  23. Kogure, K., Simidu, U., and Taga, N., 1979. A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology, 25, 415–420.CrossRefGoogle Scholar
  24. Larsson, U., and Hagström, Å., 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Marine Biology, 52, 199–206.CrossRefGoogle Scholar
  25. Morris, R. M., Rappé, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., Carlson, C. A., and Giovannoni, S. J., 2002. SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 420, 806–810.CrossRefGoogle Scholar
  26. Pernthaler, A., Pernthaler, J., and Amann, R. I., 2002. Fluorescent in situ hybridizarion and catalyzed reporter deposition for the identification of marine bacteria. Applied and Environmental Microbiology, 68, 3094–3101.CrossRefGoogle Scholar
  27. Pinhassi, J., and Hagstrom, A., 2000. Seasonal succession in marine bacterioplankton. Aquatic Microbial Ecology, 21, 245–256.CrossRefGoogle Scholar
  28. Pinhassi, J., Winding, A., Binnerup, S., Zweifel, U. L., Riemann, B., and Hagström, Å., 2003. Spatial variability in bacterioplankton community composition at the Skagerrak-Kattegat Front. Marine Ecology Progress Series, 255, 1–13.CrossRefGoogle Scholar
  29. Pommier, T., Canbäck, B., Riemann, L., Boström, H. K., Lundberg, P., Tunlid, A., and Hagström, Å., 2007. Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16, 867–880.CrossRefGoogle Scholar
  30. Proctor, L. M., and Fuhrman, J. A., 1990. Viral mortality of marine bacteria and cyanobacteria. Nature, 343, 60–62.CrossRefGoogle Scholar
  31. Rappé, M. S., Connon, S. A., Vergin, K. L., and Giovannoni, S. J., 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature, 418, 630–633.CrossRefGoogle Scholar
  32. Riemann, L., Steward, G. F., and Azam, F., 2000. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Applied and Environmental Microbiology, 66, 578–587.CrossRefGoogle Scholar
  33. Sabehi, G., Loy, A., Jung, K. H., Partha, R., Spudich, J. L., Isaacson, T., Hirschberg, J., Wagner, M., and Beja, O., 2005. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLOS Biology, 3, 1409–1417.CrossRefGoogle Scholar
  34. Salomon, P. S., Janson, S., and Granéli, E., 2003. Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful Algae, 2, 261–272.CrossRefGoogle Scholar
  35. Smith, E. M., and del Giorgio, P. A., 2003. Low fractions of active bacteria in natural aquatic communities? Aquatic Microbial Ecology, 31, 203–208.CrossRefGoogle Scholar
  36. Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F., 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–142.CrossRefGoogle Scholar
  37. Stevenson, B. S., and Schmidt, T. M., 1998. Growth rate-dependent accumulation of RNA from plasmid-borne rRNA operons in Escherichia coli. Journal of Bacteriology, 180, 1970–1972.Google Scholar
  38. Suzuki, M. T., Preston, C. M., Chavez, F. P., and Delong, E. F., 2001. Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey bay. Aquatic Microbial Ecology, 24, 117–127.CrossRefGoogle Scholar
  39. Tabor, P. S., and Neihof, R. A., 1984. Direct determination of activities for microorganisms of Chesapeake bay populations. Applied and Environmental Microbiology, 48, 1012–1019.Google Scholar
  40. Thurman, H. V., 1997. Introductory Oceanography. New Jersey, USA: Prentice Hall College. ISBN 0132620723.Google Scholar
  41. Vacelet, E., 1972. Generation time measured in minutes for marine bacteria. Comptes rendus hebdomadaires des séances de l’Académie des sciences. Série D: Sciences naturelles, 274, 2083–2085.Google Scholar
  42. Woese, C. R., 1987. Bacterial evolution. Microbiological Reviews, 51, 221–271.Google Scholar
  43. Woese, C. R., Stackebrandt, E., Macke, T. J., and Fox, G. E., 1985. A phylogenetic definition of the major eubacterial taxa. Systematic and Applied Microbiology, 6, 143–151.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas Pommier
    • 1
  1. 1.Microbial Ecology Centre UMR 5557 CNRS-Université Lyon 1; USC 1193 INRACNRS-Université lyonVilleurbanneFrance