Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Radioactivity (Natural)

  • Beda A. Hofmann
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_171


Natural radiation; Terrestrial radiation


Natural radioactivity (NR) is predominantly due to the decay of 238U, 235U, 232Th (and their chains of daughter elements), 87Rb (27.8% of natural Rb), and 40K (0.012% of natural K). Early in the Earth’s history 244Pu (half life 82.6 Ma) also was an important radioelement. These are all primordial isotopes formed prior to the origin of the solar system. The list of natural radioisotopes also includes primordial 147Sm and 187Re and short-lived cosmogenic isotopes such as 10Be, 14C, and 26Al. Of all these elements, only U, Th (including daughter elements) Rb, and K represent significant sources of terrestrial natural radioactivity. U, Th, and daughters are emitters of alpha and beta particles and gamma rays; 87Rb emits beta particles, 40K is a beta and gamma emitter. Another source of NR are the cosmic rays, dominantly protons (and minor He nuclei) with a very wide range of energies. The higher energetic ones are of galactic...


Natural Radioactivity Radioactive Mineral Daughter Element Bacterium Deinococcus Radiodurans Manned Space Mission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bauer, S., and Lammer, H., 2004. Planetary Aeronomy. Berlin: Springer, 207 p.CrossRefGoogle Scholar
  2. Cherry, R., Desbruyères, D., Heyraud, M., and Nolan, C., 1992. High levels of natural radioactivity in hydrothermal vent polychaetes: Comptes rendus de l'Académie des sciences, Série III, 315, 21–26.Google Scholar
  3. Hofmann, B. A., 1992. Isolated reduction phenomena in red beds: a result of porewater radiolysis? In Maest, A. S. (ed.), 7th International Symposium on Water-Rock Interaction: Park City: Balkema, pp. 503–506.Google Scholar
  4. Hofmann, B. A., 2004, Highly altered organic matter on Earth: biosignature relevance. In Derenne, L. S., Dutrey, A., Despois, D., Lazcano, A., and Robert, F. (eds.), Astrobiology: Future Perspectives. Astrophysics and Space Science Library, Amsterdam: Springer, Vol. 305, pp. 317–331.CrossRefGoogle Scholar
  5. Jolivet, E., L’Haridon, S., Corre, E., Forterre, P., and Prieur, D., 2003. Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. International Journal of Systematic and Evolutionary Microbiology, 53, 847–851.CrossRefGoogle Scholar
  6. Jørgensen, B., and D’Hondt, S., 2006. A starving majority deep beneath the seafloor. Science, 314, 932–934.CrossRefGoogle Scholar
  7. Kminek, G., and Bada, J. L., 2006. The effect of ionizing radiation on the preservation of amino acids on Mars. Earth and Planetary Science Letters, 245, 1–5.CrossRefGoogle Scholar
  8. Lin, L.-H., Slater, G. F., Sherwood Lollar, B., Lacrampe-Couloume, G., and Onstott, T. C., 2005. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochimica et Cosmochimica Acta, 69, 893–903.CrossRefGoogle Scholar
  9. Lin, L.-H., Wang, P.-L., Rumble, D., Lippmann-Pipke, J., Boice, E., Pratt, L. M., Sherwood Lollar, B., Brodie, E. L., Hazen, T. C., Andersen, G. L., DeSantis, T. Z., Moser, D. P., Kershaw, D., and Onstott, T. C., 2006. Long-term sustainability of a high-energy, low-diversity crustal biome. Science, 314, 479–482.CrossRefGoogle Scholar
  10. Lovley, D. R., Philips, E. J. P., Gorby, Y. A., and Landa, E. R., 1991. Microbial reduction of uranium. Nature, 350, 413–416.CrossRefGoogle Scholar
  11. Lovley, D. R., Roden, E. E., Philips, E. J. P., and Woodward, J. C., 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geology, 113, 41–53.CrossRefGoogle Scholar
  12. Mathieu, R., Zetterström, L., Cuney, M., Gauthier-Lafaye, F., and Hidaka, H., 2001. Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chemical Geology, 171, 147–171.CrossRefGoogle Scholar
  13. Mattimore, V., and Battista, J. R., 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. Journal of Bacteriology, 178, 633–637.Google Scholar
  14. Mileikowski, C., Cucinotta, F., Wilson, J. W., Gladman, B., Horneck, G., Lindgren, L., Melosh, J., Rickman, H., Valtonen, M., and Zheng, J. Q., 2000. Natural transfer of viable microbes in space. 1. From Mars to Earth and Earth to Mars. Icarus, 145, 391–427.CrossRefGoogle Scholar
  15. Milodowski, A. E., West, J. M., Pearce, J. M., Hyslop, E. K., Basham, I. R., and Hooker, P. J., 1990. Uranium- mineralized microorganisms associated with uraniferous hydrocarbons in southwest Scotland. Nature, 347, 465–467.CrossRefGoogle Scholar
  16. Mohagheghi, A., Updegraff, D. M., and Goldhaber, M. B., 1985. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicrobiology Journal, 4, 153–173.CrossRefGoogle Scholar
  17. Parnell, J., 2004. Mineral radioactivity in sands as a mechanism for fixation of organic carbon in the early Earth. Origins of Life an Evolution of the Biosphere, 34, 533–547.CrossRefGoogle Scholar
  18. Rasmussen, B., 2005. Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Ga shales. Geology, 33, 497–500.CrossRefGoogle Scholar
  19. Rasmussen, B., Glover, J. E., and Foster, C. B., 1993. Polymerisation of hydrocarbons by radioactive minerals in sedimentary rocks: diagenetic and economic significance, In Landais, P. (ed.), Bitumens in Ore Deposits. Berlin: Springer, pp. 490–509.CrossRefGoogle Scholar
  20. Savary, V., and Pagel, M., 1997. The effects of water radiolysis on local redox conditions in the Oklo, Gabon, natural fission reactors 10 and 16. Geochimica Cosmochimca Acta, 61, 4479–4494.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Beda A. Hofmann
    • 1
  1. 1.Earth Science DepartmentNatural History Museum BernBernSwitzerland