Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Michael Hoppert
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_16


Eubacteria (term abandoned)


Prokaryotes that constitute, besides Archaea and Eukarya, a domain of life. According to (old Greek) bakterion “small rod.”


During the nineteenth century, several fundamental discoveries defined the beginning of modern microbiology (cf. Schlegel, 1999). Louis Pasteur (1822–1895) found that growth of bacteria in nutrient broths is not due to spontaneous generation and that fermentation is caused by the growth of microorganisms. Ferdinand Cohn (1828–1898) could state that bacteria must belong to a phylogenetic group separated from other unicellular plants or animals, due to their size, shape, the mode of cell division, and their metabolic properties. Robert Koch (1842–1910) developed the concept of infectious diseases. The final proof that bacteria must be distinct from plants and animals could be shown not until the distinct compartmentation of bacterial cells was noticed by electron microscopy, in the 1960s. Especially, the...


Horizontal Gene Transfer Calvin Cycle Bacterial Phyla Methane Monooxygenase Reduce Sulfur Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Asao, M., and Madigan, M. T., 2010. Taxonomy, phylogeny and ecology of the heliobacteria. Photosynthesis Research, 104, 103–111.CrossRefGoogle Scholar
  2. Barton, L., and Fauque, G. D., 2009. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Advances in Applied Microbiology, 68, 41–98.CrossRefGoogle Scholar
  3. Bernadet, J.-F., and Nakagawa, Y., 2006. An introduction to the family Flavobacteriaceae. In Balows, et al. (eds.), The Prokaryotes 7. Heidelberg: Springer, pp. 455–480.CrossRefGoogle Scholar
  4. Campbell, L., and Vaulot, D., 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Research Part I: Oceanographic Research Papers, 40, 2043–2060.CrossRefGoogle Scholar
  5. Charon, N. W., Greenberg, E. P., Koopman, M. B., and Limberger, R. J., 1992. Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Microbiological Research, 143, 597–603.Google Scholar
  6. Chistoserdova, L., Kalyuzhnaya, M. G., and Lidstrom, M. E., 2009. The Expanding World of Methylotrophic Metabolism. Annual Review of Microbiology, 63, 477–499.CrossRefGoogle Scholar
  7. Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., and Bork, P., 2006. Toward Automatic Reconstruction of a highly resolved tree of life. Science, 311, 1283–1287.CrossRefGoogle Scholar
  8. Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrell, D. A., Marsh, T., Garrity, G. M., and Tiedje, J. M., 2008. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, D141–D145.CrossRefGoogle Scholar
  9. Crerar, D. A., Knox, G. W., and Means, J. L., 1979. Biogeochemistry of bog iron in the New Jersey Pine Barrens. Chemical Geology, 24, 111–135.CrossRefGoogle Scholar
  10. Da Costa, M. S., Rainey, F. A., and Nobre, M. F., 2006. The genus Thermus and relatives. In Balows, et al. (eds.), The Prokaryotes 7. Heidelberg: Springer, pp. 797–812.CrossRefGoogle Scholar
  11. Dubilier, N., Bergin, C., and Lott, C., 2008. Symbiotic diversity in marine animals: the art of harnessing chemosymbiosis. Nature Reviews Microbiology, 6, 725–740.CrossRefGoogle Scholar
  12. Gray, M. W., Burger, G., and Lang, B. F., 1999. Mitochondrial evolution. Science, 283, 1476–1481.CrossRefGoogle Scholar
  13. Hanada, S., and Pierson, B. K., 2006. The family Chloroflexaceae. In Balows, et al. (eds.), The Prokaryotes 7. Heidelberg: Springer, pp. 815–842.CrossRefGoogle Scholar
  14. Huber, R., and Eder, W., 2006. Aquificales. In Balows, et al. (eds.), The Prokaryotes 7. Heidelberg: Springer, pp. 925–938.CrossRefGoogle Scholar
  15. Kelly, D. P., and Wood, A. P., 2006. The chemolithotrophic Bacteria. In Balows, et al. (eds.), The Prokaryotes 2. Heidelberg: Springer, pp. 441–456.CrossRefGoogle Scholar
  16. Kersters, K., de Vos, P., Gillis, M., Swings, J., Vandamme, P., and Stackebrandt, E., 2006. Introduction to Proteobacteria. In Balows, et al. (eds.), The Prokaryotes 5. Heidelberg: Springer, pp. 3–37.CrossRefGoogle Scholar
  17. Lee, K. C., Webb, R. I., Janssen, P. H., Sangwan, P., Romeo, T., Staley, J. T., and Fuerst, J. A., 2009. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiology, 9, 5.CrossRefGoogle Scholar
  18. Lonhienne, T. G, Sagulenko, E., Webb, R. I., Lee, K. C., Franke, J., Devos, D. P., Nouwens, A., Carroll, B. J., and Fuerst, J. A., 2010. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proceedings of the National Academy of Sciences USA, 107, 12883–12888.CrossRefGoogle Scholar
  19. Madigan M. T., Dunlap, P. V., and Clark, D. P., 2009. Brock Biology of Microorganisms, 12th edn. San Francisco: Pearson/Benjamin Cummings.Google Scholar
  20. Nelson, K. E., Clayton, R.A., Gill, S. R. et al., 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature, 399, 323–329.CrossRefGoogle Scholar
  21. Overmann, J., and Garcia-Pichel, F., 2006. The phototrophic way of life. In Balows, et al. (eds.), The Prokaryotes 1. Heidelberg: Springer, pp. 82–85.Google Scholar
  22. Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J. A., and Woese, C. R., 1987. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Systematic and Applied Microbiology, 9, 47–53.CrossRefGoogle Scholar
  23. Pace, N. R., 2009. Mapping the tree of life. Microbiology and Molecular Biology Reviews, 73, 565–576.CrossRefGoogle Scholar
  24. Schlegel, H. G., 1999. Geschichte der Mikrobiologie (Acta Historica Leopoldina 28). Halle (Saale): Deutsche Akademie der Naturforscher Leopoldina.Google Scholar
  25. Schlegel, H. G., and Jannasch, H. W., 2006. Prokaryotes and their habitats. In Balows, et al. (eds.), The Prokaryotes 1. Heidelberg: Springer, pp. 137–184.CrossRefGoogle Scholar
  26. Stackebrandt, E., and Schumann, P., 2006. Introduction to the taxonomy of Actinobacteria. In Balows, et al. (eds.), The Prokaryotes 3. Heidelberg: Springer, pp. 297–321.CrossRefGoogle Scholar
  27. Szabó, Z., Stahl, A. O., Albers, S. V., Kissinger, J. C., Driessen, A. J., and Pohlschröder, M., 2007. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J Bacteriol, 189, 772–778.CrossRefGoogle Scholar
  28. Tucker, J. D., Siebert, C. A., Escalante, M., Adams, P. G., Olsen, J. D., Otto, C., Stokes, D. L., and Hunter, C. N., 2010. Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Molecular Microbiology, 76, 833–847.CrossRefGoogle Scholar
  29. Waterbury, J. B., 2006. The Cyanobacteria – isolation, purification, and identification. In Balows, et al. (eds.), The Prokaryotes. Heidelberg: Springer, pp. 1053–1073.CrossRefGoogle Scholar
  30. Woese, C. R., and Fox, G. E., 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Science USA, 74, 5088–5090.CrossRefGoogle Scholar
  31. Wu, M., and Eisen, J. A., 2008. A simple, fast, and accurate method of phylogenomic inference. Genome Biology, 9, R151.CrossRefGoogle Scholar
  32. Zinder, S. H., and Dworkin, M., 2006. Morphological and physiological diversity. In Balows, et al. (eds.), The Prokaryotes 1. Heidelberg: Springer, pp. 185–220.CrossRefGoogle Scholar
  33. Zusman, D. R., Scott, A. E., Yang, Z., and Kirby, J. R., 2007. Chemosensory pathways, motility and development in Myxococcus xanthus. Nature Reviews of Microbiology, 5, 862–872.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael Hoppert
    • 1
  1. 1.Institut für Mikrobiologie und GenetikUniversity of GöttingenGöttingenGermany