Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Ores, Microbial Precipitation and Oxidation

  • Beda A. Hofmann
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_158


Gossan; Ore deposits; Oxidation zone; Supergene enrichment


Ore deposits are natural enrichments of chemical elements of economic interest. While all natural elements are present in certain background concentrations in rocks and minerals, they are typically not economically extractable at these levels. Geological processes may lead to enrichments of elements in such a way that orebodies are formed from which large quantities of elements may be extracted at a much lower cost. The formation of orebodies generally occurs in three steps: (1) element extraction from a large volume of rock or melt; (2) transport of elements; (3) deposition of elements in a volume of rock much smaller than the extracted volume. These steps may occur in magmatic melts, hydrothermal systems, diagenetic environments, and at the Earth’s surface. Melts, solutions, gases, and solid phases (minerals) may be involved in these processes. In many cases, ore forming processes occur in magmatic and...


Black Shale Sulfur Isotope Uranium Deposit Oxidation Zone Band Iron Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Anbar, A. D., 2004. Iron stable isotopes: beyond biosignatures. Earth and Planetary Science Letters, 217, 223–236.CrossRefGoogle Scholar
  2. Bak, F., and Cypionka, H., 1987. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature, 326, 891–892.CrossRefGoogle Scholar
  3. Bawden, T. M. et al., 2003. Extreme 34S depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: evidence for bacteriogenic supergene sphalerite. Geology, 31(10), 913–916.CrossRefGoogle Scholar
  4. Bentley, R., and Chasteen, T. G., 2002. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiology and Molecular Biology Reviews, 66(2), 250–271.CrossRefGoogle Scholar
  5. Beukes, N. J., 2004. Early options in photosynthesis. Nature, 431, 522–523.CrossRefGoogle Scholar
  6. Burstein, I. B., Shelton, K. L., Gregg, J. M., and Hagni, R. D., 1993. Complex, multiple ore-fluids in the world-class Southeast Missouri Pb-Zn-Cu deposits: sulfur isotope evidence. In Hagni, R. D. (ed.), Geology and Geochemistry of Mississippi Valley-Type Ore Deposits. Rolla: University of Missouri, pp. 1–15.Google Scholar
  7. Campbell, W. R., and Barton, P. B., 1996. Occurrence and significance of stalactites within the epithermal deposits at Creede, Colorado. The Canadian Mineralogist, 34, 905–930.Google Scholar
  8. Dahanayake, K., and Krumbein, W. E., 1986. Microbial structures in oolithic iron formations. Mineralium Deposita, 21, 85–94.CrossRefGoogle Scholar
  9. Dahlkamp, F. J., 1993. Uranium Ore Deposits. Berlin: Springer, p. 459.CrossRefGoogle Scholar
  10. Donnelly, T. H., and Ferguson, J., 1980. A stable isotope study of three deposits in the Alligator Rivers uranium field. In Ferguson, J., and Goleby, A. B. (eds.), Uranium in the Pine Creek Geosyncline. Vienna: International Atomic Energy Agency, pp. 387–406.Google Scholar
  11. Enders, M. S., Knickerbocker, C., Titley, S. R., and Southham, G., 2006. The role of bacteria on the supergene environments of the Morenci porphyry copper deposit, Greenlee County, Arizona. Economic Geology, 101, 59–70.CrossRefGoogle Scholar
  12. Fallick, A. E., Ashton, J. H., Boyce, A. J., Ellam, R. M., and Russell, M. J., 2001. Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulphide orebody at Navan, Ireland. Economic Geology, 96, 885–890.Google Scholar
  13. Glynn, S. et al., 2006. The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides. Earth and Planetary Science Letters, 244, 170–185.CrossRefGoogle Scholar
  14. Goldhaber, M. B. et al., 1990. Genesis of the tabular-type Vanadium-Uranium Deposits of the Henry Basin, Utah. Part II. Mechanisms of ore and gangue mineral formation at the interface between brine and meteoric water. Economic Geology, 85, 215–269.CrossRefGoogle Scholar
  15. Goldhaber, M. B., Reynolds, R. L., and Rye, R. O., 1978. Origin of a South Texas roll-type uranium deposit: II. sulfide petrology and sulfur isotope studies. Economic Geology, 73, 1690–1705.CrossRefGoogle Scholar
  16. Hofmann, B., 1989a. Erzmineralien in palaeozoischen, mesozoischen und tertiären Sedimenten der Nordschweiz und Südwestdeutschlands. Schweizerische Mineralogische und Petrographische Mitteilungen, 69, 345–357.Google Scholar
  17. Hofmann, B., 1989b. Genese, Alteration und rezentes Fliess-System der Uranlagerstätte Krunkelbach (Menzenschwand, Südschwarzwald). Baden, Switzerland: Nagra, pp. 88–30.Google Scholar
  18. Hofmann, B., and v. Gehlen, K., 1993. Formation of stratiform sulfide mineralizations in the Lower Muschelkalk (Middle Triassic) of Southwestern Germany and Northern Switzerland: constraints from sulfur isotope data. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 365–374.Google Scholar
  19. Hofmann, B. A., 1999. Geochemistry of Natural Redox Fronts – A Review. NTB 99–05, Wettingen, Switzerland: Nagra.Google Scholar
  20. Hofmann, B. A., Helfer, M., Diamond, I., Villa, I., and Sharp, Z. D., 1998. Late-Alpine epithermal breccia mineralization at Grimsel, Central Swiss Alps. Terra Nostra, 98(1), 17.Google Scholar
  21. Hofmann, B. A., Farmer, J. D., von Blanckenburg, F., and Fallick, A. E., 2008. Subsurface filamentous fabrics: An evaluation of possible modes of origins based on morphological and geochemical criteria, with implications for exoplaeontology. Astrobiology, 8(1), 87–117.CrossRefGoogle Scholar
  22. Jensen, M. L., 1958. Sulfur isotopes and the origin of sandstone-type uranium deposits. Economic Geology, 53, 598–616.CrossRefGoogle Scholar
  23. Kappler, A., Pasquero, C., and Konhauser, K. O., 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33(11), 865–868.CrossRefGoogle Scholar
  24. Kashefi, K., and Lovley, D. R., 2000. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Applied and Environmental Microbiology, 66(3), 1050–1056.CrossRefGoogle Scholar
  25. Kashefi, K., Tor, J. M., Nevin, K. P., and Lovley, D. R., 2001. Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Applied and Environmental Microbiology, 67(7), 3275–3279.CrossRefGoogle Scholar
  26. Kirschvink, J. L. et al., 2000. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences, 97(4), 1400–1405.CrossRefGoogle Scholar
  27. Klein, C., 2005. Some Precambrian banded iron-formations (BIFs) around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90, 1473–1499.CrossRefGoogle Scholar
  28. Konhauser, K. O., 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews, 43, 91–121.CrossRefGoogle Scholar
  29. Konhauser, K. O. et al., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30, 1079–1082.CrossRefGoogle Scholar
  30. Kucha, H., Schroll, E., and Stumpfl, E. F., 2005. Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. Mineralium Deposita, 40, 123–126.CrossRefGoogle Scholar
  31. Labrenz, M. et al., 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290, 1744–1747.CrossRefGoogle Scholar
  32. Leach, D. L., Viets, J. G., and Gent, C. A., 1996. Sulfur isotope geochemistry of ore and gangue minerals from the Silesia-Cracow Mississippi Valley-type ore district, Poland. Prace Panstwowego Instytutu Geologicznego, 154, 123–137.Google Scholar
  33. Lehmann, B. et al., 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 35(5), 403–406.CrossRefGoogle Scholar
  34. Lengke, M. F., and Southham, G., 2005. The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochimica et Cosmochimica Acta, 69(15), 3759–3772.CrossRefGoogle Scholar
  35. Leventhal, J. S., 1998. Metal-rich black shales: formation, economic geology and environmental considerations. In Schieber, J., Zimmerle, W., and Sethi, P. (eds.), Shales and Mudstones. Stuttgart: Nägerle u. Obermiller.Google Scholar
  36. Machel, H. G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights. Sedimentary Geology, 140, 143–175.CrossRefGoogle Scholar
  37. Macqueen, R. W., and Coope, J. A., 1985. Role of organisms and organic matter in ore deposition. Canadian Journal of Earth Sciences, 22, 1890–1892.CrossRefGoogle Scholar
  38. Melchiorre, E. B., and Williams, P. A., 2001. Stable isotopic characterization of the thermal profile and subsurface biological activity during oxidation of the Great Australia Deposit, Cloncurry, Queensland, Australia. Economic Geology, 96, 1685–1693.CrossRefGoogle Scholar
  39. Melchiorre, E. B., Williams, P. A., and Bevins, R. E., 2001. A low temperature oxygen isotope thermometer for cerussite, with applications at Broken Hill, New South Wales, Australia. Geochimica et Cosmochimica Acta, 65(15), 2527–2533.CrossRefGoogle Scholar
  40. Meunier, J. D., Landais, P., Monthioux, M., and Pagel, M., 1987. Oxidation – reduction processes in the genesis of the uranium – vanadium tabular deposits of the Cottonwood Wash mining area (Utah, USA): evidence from petrological study and organic matter analysis. Bulletin of Minéralogy, 110, 145–156.Google Scholar
  41. Mohagheghi, A., 1985. The Role of Aqueous Sulfide and Sulfate-Reducing Bacteria in the Kinetics and Mechanisms of the Reduction of Uranyl Ion. PhD thesis, Colorado School of Mines, Colorado.Google Scholar
  42. Mohagheghi, A., Updegraff, D. M., and Goldhaber, M. B., 1985. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicrobiology Journal, 4(2), 153–173.CrossRefGoogle Scholar
  43. Moreau, J. W., Webb, R. I., and Banfield, J. F., 2004. Ultrastructure, aggregation state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite. American Mineralogist, 89, 950–960.Google Scholar
  44. Nordstrom, D. K., and Southam, G., 1997. Geomicrobiology of sulfide mineral oxidation. In Nealson, K. H.  (ed.), Geomicrobiology. Reviews in Mineralogy. Washington: Mineralogical Society of America, pp. 361–390.Google Scholar
  45. Oremland, R. S. et al., 2005. A microbial arsenic cycle in a salt-saturated extreme environment. Science, 308, 1305–1308.CrossRefGoogle Scholar
  46. Rackley, R. I., 1972. Environment of Wyoming tertiary uranium deposits. American Association of Petroleum Geologists Bulletin, 56, 755–774.Google Scholar
  47. Rainbow, A., Kyser, T. K., and Clark, A. H., 2006. Isotopic evidence for microbial activity during supergene oxidation of a high-sulfidation epithermal Au-Ag deposit. Geology, 34(4), 269–272.CrossRefGoogle Scholar
  48. Reitner, J., 2004. Fossile tiefe Biosphäre in Klüften des Triberg Granits (Moosengrund, Schwarzwald). In Schmidt, G. (ed.), Geobiologie. 74. Jahrestagung der Paläonto-logischen Gesellschaft, Göttingen, 02. bis 08. Oktober 2004. Kurzfassungen der Vorträge und Poster. Universitätdruckerei Göttingen, Göttingen.Google Scholar
  49. Reynolds, R. L., Goldhaber, M. B., and Carpenter, D. J., 1982. Biogenic and nonbiogenic ore-forming processes in the South Texas uranium district: Evidence from the Panna Maria deposit. Economic Geology, 77, 541–556.CrossRefGoogle Scholar
  50. Saunders, J. A., and Swann, C. T., 1994. Mineralogy and geochemistry of a cap-rock Zn-Pb-Sr-Ba occurrence at the Hazlehurst salt dome, Mississippi. Economic Geology, 89(2), 381–390.CrossRefGoogle Scholar
  51. Schaefer, M. O., Gutzmer, J., and Beukes, N. J., 2001. Late plaeoproterozoic Mn-rich oncoids: earliest evidence for microbially mediated Mn precipitation. Geology, 29(9), 835–838.CrossRefGoogle Scholar
  52. Schroll, E., 1996. The Triassic carbonate-hosted Pb-Zn mineralization in the Alps (Europe): the genetic position of Bleiberg Type deposits. In Sangster, D. F. (ed.), Carbonate-Hosted Lead-Zinc Deposits. Michigan: Society of Economic Geologists, Special Publication 4.Google Scholar
  53. Sillitoe, R. H., Folk, R. L., and Saric, N., 1996. Bacteria as mediators of copper sulfide enrichment during weathering. Science, 272, 1153–1155.CrossRefGoogle Scholar
  54. Southam, G., and Saunders, J. A., 2005. The Geomicrobiology of ore deposits. Economic Geology, 100(6), 1067–1084.CrossRefGoogle Scholar
  55. Stolz, J. S., and Oremland, R. S., 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23(5), 615–627.CrossRefGoogle Scholar
  56. Stribrny, B., and Puchelt, H., 1991. Geochemical and metallogenic aspects of organic carbon-rich pelitic sediments in Germany. In Pagel, M., and Leroy, J. L. (eds.), Source, Transport and Deposition of Metals. Rotterdam: Balkema, pp. 593–598.Google Scholar
  57. Suzuki, Y., and Banfield, J. F., 1999. Geomicrobiology of uranium. In Burns, P. C., and Finch, R. (eds.), Uranium: Mineralogy, Geochemistry and the Environment. Washington: Mineralogical Society of America, pp. 393–432.Google Scholar
  58. Taylor, B. E., 2004. Biogenic and thermogenic sulfate reduction in the Sullivan Pb-Zn-Ag deposit, British Columbia (Canada): Evidence from micro-isotopic analysis of carbonate and sulfide in bedded ores. Chemical Geology, 204, 215–236.CrossRefGoogle Scholar
  59. Tebo, B. M., Ghiorse, W. C., van Waasbergen, L. G., Siering, P. L., and Caspi, R., 1997. Bacterially mediated mineral formation: Insights into manganese(II) oxidation from molecular genetic and biochemical studies. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions between microbes and minerals. Reviews in Mineralogy, No. 35. Washington: Mineralogical Society of America.Google Scholar
  60. Waber, N., Schorscher, H. D., and Peters, T., 1992. Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poços de Caldas, Minas gerais, Brazil. Journal of Geochemical Exploration, 45, 53–112.CrossRefGoogle Scholar
  61. Wanty, R. B., Goldhaber, M. B., and Northrop, H. R., 1990. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium-uranium deposit, Henry Basin, Utah. Economic Geology, 85, 270–284.CrossRefGoogle Scholar
  62. Warren, C. G., 1971. A method for discriminating between biogenic and chemical origins of the ore-stage pyrite in a roll-type uranium deposit. Economic Geology, 66, 919–928.CrossRefGoogle Scholar
  63. Warren, C. G., 1972. Sulfur isotopes as a clue to the genetic geochemistry of a roll-type uranium deposit. Economic Geology, 67, 759–767.CrossRefGoogle Scholar
  64. Widdel, F. et al., 1993. Ferrous iron oxidation by anoxygenic phototropic bacteria. Nature, 362, 834–836.CrossRefGoogle Scholar
  65. Wilkinson, J. J., Eyre, S. L., and Boyce, A. J., 2005. Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Economic Geology, 100(1), 63–86.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Beda A. Hofmann
    • 1
  1. 1.Earth Science DepartmentNatural History Museum BernBernSwitzerland