Skip to main content

Microsensors for Sediments, Microbial Mats, and Biofilms

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Amperometry; Diagenesis; Diffusion-reaction; Microelectrode; Microenvironment; Potentiometry

Definition

Microsensors are needle-shaped sensors (Figure 1) that can be inserted in biologically active matrices, such as sediments, to measure directly concentrations of certain compounds.

Microsensors for Sediments, Microbial Mats, and Biofilms. Figure 1
figure 1

Left panel, microsensors for oxygen (left sensor), for pH (middle), and for H2S (right sensor). The right panel zooms further in on the tip of an oxygen sensor, showing the gold-plated electrode behind a silicon membrane, the ticks on the ruler are 1 μµm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ammann, D., 1986. Ion-Selective Microelectrodes: Principles, Design and Applications. Berlin: Springer.

    Google Scholar 

  • Andersen, K., Kjær, T., and Revsbech, N. P., 2001. An oxygen insensitive microsensor for nitrous oxide. Sensors and Actuators, 81, 42–48.

    Article  Google Scholar 

  • Berg, P., Risgaard-Pedersen, N., and Rysgaard, S., 1998. Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography, 43, 1500–1510.

    Article  Google Scholar 

  • Bungay, H. R., Whalen, W. J., and Sanders, W. M., 1969. Microprobe techniques for determining diffusivities and respiration rates in microbial slimes. Biotechnology and Bioengineering, 11, 765–772.

    Article  Google Scholar 

  • Cronenberg, C. C. H., Van Groen, H., de Beer, D., and Van den Heuvel, J. C., 1991. Oxygen-independent glucose microsensor based on glucose oxidase. Analytica Chimica Acta, 242, 275–278.

    Article  Google Scholar 

  • Damgaard, L. R., and Revsbech, N. P., 1997. A microscale biosensor for methane containing methanotrophic bacteria and an internal oxygen reservoir. Analytical Chemistry, 69, 2262–2267.

    Article  Google Scholar 

  • de Beer, D., 2001. Microsensor studies of oxygen, carbon and nitrogen cycles in lake sediments and microbial mats. In Taillefert, M., and Rozan, T. F. (eds.), Environmental Electrochemistry: Analyses of Trace Element Biogeochemistry. New York: Oxford University Press, pp. 227–246.

    Google Scholar 

  • de Beer, D., and Schramm, A., 1999. Micro-environments and mass transfer phenomena in biofilms studied with microsensors. Water Science and Technology, 39, 173–178.

    Article  Google Scholar 

  • de Beer, D., and Sweerts, J. P. R. A., 1989. Measurements of nitrate gradients with an ion-selective microelectrode. Analytica Chimica Acta, 219, 351–356.

    Article  Google Scholar 

  • de Beer, D., and Van den Heuvel, J. C., 1988. Response of ammonium-selective microelectrodes based on the neutral carrier nonactin. Talanta, 35, 728–730.

    Article  Google Scholar 

  • de Beer, D., van den Heuvel, J. C., and Ottengraf, S. P. P., 1993. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Applied and Environmental Microbiology, 59, 573–579.

    Google Scholar 

  • de Beer, D., Srinivasan, R., and Stewart, P. S., 1994a. Direct measurement of chlorine penetration into biofilms during disinfection. Applied and Environmental Microbiology, 60, 4339–4344.

    Google Scholar 

  • de Beer, D., Stoodley, P., and Lewandowski, Z., 1994b. Liquid flow in heterogeneous biofilms. Biotechnology and Bioengineering, 44, 636–641.

    Article  Google Scholar 

  • de Beer, D., Stoodley, P., Roe, F., and Lewandowski, Z., 1994c. Effect of biofilm structures on oxygen distribution and mass transfer. Biotechnology and Bioengineering, 43, 1131–1138.

    Article  Google Scholar 

  • de Beer, D., Glud, A., Epping, E., and Kühl, M., 1997a. A fast responding CO2 micro-electrode for profiling sediments, microbial mats and biofilms. Limnology and Oceanography, 42, 1590–1600.

    Article  Google Scholar 

  • de Beer, D., Schramm, A., Santegoeds, C. M., and Kühl, M., 1997b. A nitrite microsensor for profiling environmental biofilms. Applied and Environmental Microbiology, 63, 973–977.

    Google Scholar 

  • de Beer, D., Kühl, M., Stambler, N., and Vaki, L., 2000. A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp. Marine Ecology. Progress Series, 194, 75–85.

    Article  Google Scholar 

  • de Beer, D., Wenzhöfer, F., Ferdelman, T. G., Boehme, S., Huettel, M., van Beusekom, J., Boettcher, M., Musat, N., and Dubilier, N., 2004. Transport and mineralization rates in North Sea sandy intertidal sediments (Sylt-Rømø Basin, Waddensea). Limnology and Oceanography, 50, 113–127.

    Article  Google Scholar 

  • de Beer, D., Sauter, E., Niemann, H., Kaul, N., Foucher, J. P., Witte, U., Schlüter, M., and Boetius, A., 2006. In situ fluxes and zonation of microbial activity in surface sediments of the HÃ¥kon Mosby Mud Volcano. Limnology and Oceanography, 51, 1315–1331.

    Article  Google Scholar 

  • Ebert, A., and Brune, A., 1997. Hydrogen concentration profiles at the oxicanoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Applied and Environmental Microbiology, 63, 4039–4046.

    Google Scholar 

  • Gieseke, A., and de Beer, D., 2004. Use of microelectrodes to measure in situ microbial activities in biofilms, sediments, and microbial mats. In Akkermans, A. D. L., and van Elsas, D. (eds.), Molecular Microbial Ecology Manual. Dordrecht: Kluwer, pp. 1581–1612.

    Google Scholar 

  • Glud, R. N., Gundersen, J. K., Revsbech, N. P., and Jørgensen, B. B., 1993. In situ measurements of total and diffusive oxygen uptake of sediments. Trends in Microbial Ecology, 427–430.

    Google Scholar 

  • Glud, R. N., Gundersen, J. K., Jörgensen, B. B., Revsbech, N. P., and Schulz, H. D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Research, 41, 1767–1788.

    Article  Google Scholar 

  • Hinke, J., 1969. Glass microelectrodes for the study of binding and compartmentalisation of intracellular ions. In Lavallee, M., Schanne, O. F., and Herbert, N. C. (eds.), Glass Microelectrodes. New York: Wiley, pp. 349–375.

    Google Scholar 

  • Hoehler, T. M., Albert, D. B., Alperin, M. J., Bebout, B., Martens, C. S., and Des Marais, D., 2002. Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems. Antonie van Leeuwenhoek, 81, 575–585.

    Article  Google Scholar 

  • Jeroschewski, P., Steukart, C., and Kühl, M., 1996. An amperometric microsensor for the determination of H2S in aquatic environments. Analytical Chemistry, 68, 4351–4357.

    Article  Google Scholar 

  • Jørgensen, B. B., and Revsbech, N. P., 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography, 30, 111–122.

    Article  Google Scholar 

  • Kühl, M., and Revsbech, N. P., 2000. Biogeochemical microsensors for boundary layer studies. In Boudreau, B., and Jørgensen, B. B. (eds.), The Benthic Boundary Layer. New York: Oxford University Press, pp. 180–210.

    Google Scholar 

  • Larsen, L. H., Revsbech, N., and Binnerup, S. J., 1996. A microsensor for nitrate based on immobilized denitrifying bacteria. Applied and Environmental Microbiology, 62, 148–1251.

    Google Scholar 

  • Larsen, L. H., Kjaer, T., and Revsbech, N. P., 1997. A microscale NO3 − biosensor for environmental applications. Analytical Chemistry, 69, 3527–3531.

    Article  Google Scholar 

  • Meyerhoff, M. E., Pretch, E., Welti, D. H., and Simon, W., 1987. Role of trifluoroacetophenone solvents and quaternary ammonium salts in carbonate-selective liquid membrane electrodes. Analytical Chemistry, 59, 144–150.

    Article  Google Scholar 

  • Meyers, M. B., Fossing, H., and Powell, E. N., 1987. Microdistribution of interstitial meiofauna, oxygen and sulfide gradients, and the tubes of macro-fauna. Marine Ecology. Progress Series, 35, 223–241.

    Article  Google Scholar 

  • Nielsen, M., Revsbech, N. P., Larsen, L. H., and Lynngaard-Jensen, A., 2002. On-line determination of nitrite in wastewater treatment by use of a biosensor. Water Science and Technology, 45, 69–75.

    Google Scholar 

  • Polerecky, L., Bachar, A., Schoon, R., Grinstein, M., Jørgensen, B. B., de Beer, D., and Jonkers, H., 2007. Contribution of Chloroflexus respiration to oxygen cycling in a hypersaline microbial mat from Lake Chiprana, Spain. Environmental Microbiology, 9, 2007–2024.

    Article  Google Scholar 

  • Revsbech, N. P., 1983. In situ measurement of oxygen profiles of sediments by use of oxygen microelectrodes. In Gnaigner, E., and Forstner, H. (eds.), Polarographic Oxygen Sensors: Aquatic and Physiological Applications. Berlin: Springer, pp. 265–273.

    Chapter  Google Scholar 

  • Revsbech, N. P., and Jørgensen, B. B., 1986. Microelectrodes: their use in microbial ecology. Advances in Microbial Ecology, 9, 293–352.

    Google Scholar 

  • Revsbech, N. P., and Ward, D. M., 1983. Oxygen microelectrode that is insensitive to medium chemical composition: use in an acid microbial mat dominated by Cyanidium caldarum. Applied and Environmental Microbiology, 45, 755–759.

    Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H., and Cohen, Y., 1983. Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnology and Oceanography, 28, 1062–1074.

    Article  Google Scholar 

  • Revsbech, N. P., Madsen, B., and Jørgensen, B. B., 1986. Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. Limnology and Oceanography, 31, 293–304.

    Article  Google Scholar 

  • Røy, H., Lee, J. S., Jansen, S., and de Beer, D., 2007. Tide-driven deep pore-water flow in intertidal sand flats. Limnology and Oceanography, 53, 1521–1530.

    Google Scholar 

  • Santegoeds, C. M., Ferdelman, T. G., Muyzer, G., and de Beer, D., 1998. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Applied and Environmental Microbiology, 64, 3731–3739.

    Google Scholar 

  • Schramm, A., Larsen, L. H., Revsbech, N. P., Ramsing, N. B., Amann, R., and Schleifer, K. H., 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology, 62, 4641–4647.

    Google Scholar 

  • Schramm, A., de Beer, D., van den Heuvel, J. C., Ottengraf, S. P. P., and Amann, R., 1999. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitryífying bioreactor: quantification by in situ hybridisation and the use of microsensors. Applied and Environmental Microbiology, 65, 3690–3696.

    Google Scholar 

  • Schreiber, F., Polerecky, L., and de Beer, D., 2008. Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Analytical Chemistry, 80, 1152–1158.

    Google Scholar 

  • Sorensen, J., Jørgensen, B. B., and Revsbech, N. P., 1981. A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microbial Ecology, 5, 105–115.

    Article  Google Scholar 

  • Sweerts, J.-P. R. A., 1990. Oxygen consumption processes, mineralization and nitrogen cycling at the sediment-water interface of North temperate lakes, University of Amsterdam, 136 pp.

    Google Scholar 

  • Sweerts, J.-P. R. A., and de Beer, D., 1989. Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (lake Vechten, The Netherlands). Applied and Environmental Microbiology, 55, 754–757.

    Google Scholar 

  • Sweerts, J.-P. R. A., de Beer, D., Nielsen, L. P., Verdouw, H., van den Heuvel, J. C., Cohen, Y., and Cappenberg, T. E., 1990. Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments. Nature, 344, 762–763.

    Article  Google Scholar 

  • Thomas, R. C., 1978. Ion-Sensitive Intracellular Microelectrodes, How to Make and Use Them. New York: Academic.

    Google Scholar 

  • Tsien, R. Y., and Rink, T. J., 1981. Ca2+-selective electrodes: a novel PVC-gelled neutral carrier mixture compared with other currently available sensors. Journal of Neuroscience Methods, 4, 73–86.

    Article  Google Scholar 

  • Weber, M., Faerber, P., Meyer, V., Lott, C., Eickert, G., Fabricius, K. E., and de Beer, D., 2007. In situ applications of a new diver-operated motorized microsensor profiler. Environmental Science and Technology, 41, 6210–6215.

    Google Scholar 

  • Wenzhöfer, F., and Glud, R. N., 2002. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade. Deep-sea Research I, 49, 1255–1279.

    Article  Google Scholar 

  • Wenzhöfer, F., Adler, M., Kohls, O., Hensen, C., Strotmann, B., Boehme, S., and Schulz, H. D., 2001a. Calcite dissolution driven by benthic mineralization in the deep-sea: in situ measurements of Ca2+, pH, pCO2 and O2. Geochimica et Cosmochimica Acta, 65, 2677–2690.

    Article  Google Scholar 

  • Wenzhöfer, F., Holby, O., and Kohls, O., 2001b. Deep penetrating oxygen profiles measured in situ by oxygen optodes. Deep-sea Research I, 48, 1741–1755.

    Article  Google Scholar 

  • Werner, U., Billerbeck, M., Polerecky, L., Franke, U., Huettel, M., van Beusekom, J. E. E., and de Beer, D., 2006a. Spatial and temporal patterns of mineralization rates and oxygen distribution in a permeable intertidal sand flat (Sylt, Germany). Limnology and Oceanography, 51, 2549–2563.

    Article  Google Scholar 

  • Werner, U., Bird, P., Wild, C., Ferdelman, T. G., Polerecky, L., Eickert, G., Jonstone, R., Hoegh-Guldberg, O., and de Beer, D., 2006b. Spatial patterns of aerobic and anaerobic mineralization rates and oxygen penetration dynamics in coral reef sediments (Heron Island, Australia). Marine Ecology. Progress Series, 309, 93–105.

    Article  Google Scholar 

  • Wieland, A., and Kuehl, M., 2000. Irradiance and temperature regulation of oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat (Solar Lake, Egypt). Marine Biology, 137, 71–85.

    Article  Google Scholar 

  • Wieland, A., Zopfi, J., Benthien, M., and Kühl, M., 2005. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microbial Ecology, 49, 34–49.

    Article  Google Scholar 

  • Ziebis, W., Pillen, T., and Unger, B., 1998. A diver observatory for in situ studies in sublittoral sediments. Journal of the Society for Underwater Technology, 23, 63–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

de Beer, D. (2011). Microsensors for Sediments, Microbial Mats, and Biofilms. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_149

Download citation

Publish with us

Policies and ethics