Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Anaerobic Transformation Processes, Microbiology

  • Bernhard Schink
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_143

Definition and Introduction

Microbial activities in geochemical processes are most often redox reactions, either between organic matter and inorganic compounds or between different inorganic compounds. In surface soils and lake sediments, organic matter typically derives from primary production by land plants or aquatic plants including algae, provided either directly or after primary digestion by animals. Underground soils and groundwater may receive major amounts of comparably stable organic matter, most often petroleum and its derivatives, through spills and accidents. Microbial oxidation helps to eliminate such contaminants, with concomitant reduction of inorganic electron acceptors. The surprising abundance of bacteria-like structures and even living bacteria in Deep Sea sediments and terrestrial rock material down to several 100 m below surface raised the question of how microbial life can be fuelled in the apparent absence of perceptible external substrate input. The present...


Manganese Oxide Ferric Oxide Banded Iron Formation Oxygenic Photosynthesis Humic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



The author thanks Dr. Heike Freese, Konstanz, for helping with the design of Figure 1. Experimental work in the author’s lab was supported by Deutsche Forschungsgemeinschaft, Bonn, Fonds der Chemischen Industrie, Frankfurt/M., and research funds of Universität Konstanz.


  1. Cornell, R. M., and Schwertmann, U., 1996. The Iron Oxides – Structure, Properties, Reactions, Occurrence and Uses. Weinheim: VCH.Google Scholar
  2. Ding, L., Wang, X., Zhu, Y., Edwards, M., Glindemann, D., and Ren, H., 2005. Effect of pH on phosphine production and the fate of phosphorus during anaerobic process with granular sludge. Chemosphere, 59, 49.CrossRefGoogle Scholar
  3. Drake, H. L., Küsel, K., and Matthies, C., 2002. Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek, 81, 203.CrossRefGoogle Scholar
  4. Freeman, C., Ostle, N., and Kang, H., 2001. An enzymic ‘latch’ on a global carbon store. Nature (London), 409, 149.CrossRefGoogle Scholar
  5. Fuchs, G. (ed.), 2006. Allgemeine Mikrobiologie, begr. von H. G. Schlegel, 8. Aufl.  Stuttgart: Thieme, 650 p.Google Scholar
  6. Hernandez, M. E., Kappler, A., and Newman, D. K., 2004. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Applied Environmental Microbiology, 70, 921.CrossRefGoogle Scholar
  7. Holliger, C., Gaspard, S., Glod, G., Heijman, C., Schumacher, W., Schwarzenbach, R. P., and Vazquez, F., 1997. Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiology Reviews, 20, 517.CrossRefGoogle Scholar
  8. Kappler, A., Pasquero, C., Konhauser, K. O., and Newman, D. K., 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33, 865.CrossRefGoogle Scholar
  9. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., and Woodward, J. C., 1996. Humic substances as electron acceptors for microbial respiration. Nature, 382, 445.CrossRefGoogle Scholar
  10. McCarty, P. L., 1988. Bioengineering issues related to in situ remediation of contaminated soils and groundwater. Basic Life Science, 45, 143.Google Scholar
  11. Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R., 2005. Extracellular electron transfer via microbial nanowires. Nature, 435, 1098.CrossRefGoogle Scholar
  12. Schink, B., 1997. Energetics of syntrophic cooperations in methanogenic degradation. Microbiology and Molecular Biology Reviews, 61, 262.Google Scholar
  13. Spormann, A. M., and Widdel, F., 2000. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation, 11, 85.CrossRefGoogle Scholar
  14. Stevenson, F. J., 1994. Humus Chemistry. New York: John Wiley & Sons.Google Scholar
  15. Straub, K. L., and Schink, B., 2004. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Applied and Environmental Microbiology, 70, 5744.CrossRefGoogle Scholar
  16. Straub, K. L., Kappler, A., and Schink, B., 2005. Enrichment and isolation of ferric iron- and humic acid reducing bacteria. Methods in Enzymology, 397, 58.CrossRefGoogle Scholar
  17. Strohm, T. O., Griffin, B., Zumft, W., and Schink, B., 2007. Growth yields in bacterial denitrification and nitrate ammonification. Applied Environmental Microbiology, 73, 1420.CrossRefGoogle Scholar
  18. Thauer, R. K., 1998. Biochemistry of methanogenesis: a tribute to Marjorie Stephenson. 1998 Marjory Stephenson prize lecture. Microbiology, 144, 2377.CrossRefGoogle Scholar
  19. Thauer, R. K., Jungermann, K., and Decker, K., 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews, 41, 100.Google Scholar
  20. Whitman, W. B., Coleman, D. C., and Wiebe, W. J., 1998. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95, 6578.CrossRefGoogle Scholar
  21. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Aßmus, B., and Schink B., 1993. Anaerobic ferrous iron oxidation by anoxygenic phototrophs. Nature (London), 362, 834.CrossRefGoogle Scholar
  22. Wolfe, R. S., 1992. Biochemistry of methanogenesis. Biochemical Society Symposia, 58, 41.Google Scholar
  23. Zehnder, A. J. B., and Stumm, W., 1988. Geochemistry and biogeochemistry of anaerobic habitats. In Zehnder, A. J. B. (ed.), Biology of anaerobic microorganisms. New York: John Wiley & Sons, pp. 1–38.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bernhard Schink
    • 1
  1. 1.Department of BiologyUniversity of KonstanzKonstanzGermany