Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Jack D. Farmer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_14


Bioastronomy; Exobiology


Astrobiology is the interdisciplinary science that studies the origin, evolution, distribution, and future of life in the Universe. It is a highly interdisciplinary field that engages many scientific disciplines, including biology, biogeochemistry, paleontology, earth and atmospheric sciences, planetology, and astrophysics among others.

Historical perspective

Astrobiology as a term was first coined in the 1940s to encompass early scientific ideas about how to explore for extraterrestrial life (Dick and Strick, 2004). During the 1960s, astrobiological research was focused more narrowly than today, with an emphasis on the origin of life, and programs funding these activities developed under the umbrella term “exobiology.” This early period of activity culminated in the Viking mission to Mars, which carried life detection experiments designed to explore for life in Martian surface materials (Klein et al., 1976). With the failure of the Viking...


Solar System Liquid Water Habitable Zone Extrasolar Planet Habitable Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Andersen, D. T., Doran, P., Bolshiyanov, D., Rice, J., Galchenko, V., Cherych, N., Wharton, R. A., McKay, C. P., Meyer, M., and Garshnek, V., 1995. A preliminary comparison of two perennially ice-covered lakes in Antarctica: Analogs of past martian lacustrine environments. Advances in Space Research, 15, 199–202.CrossRefGoogle Scholar
  2. Benner, S. A., Alonso, R., and Carrigan, M. A., 2004. Is there a common chemical model for life in the Universe? Current Opinion in Chemical Biology, 8, 672–689.CrossRefGoogle Scholar
  3. Cleland, C., and Chyba, C., 2002. Defining life. Origins of Life and Evolution of the Biosphere, 32, 387–393.CrossRefGoogle Scholar
  4. Crabb, E., and Moore, E. A. (eds.), 2009. Metals and Life. Cambridge: RSC Publishing.Google Scholar
  5. Deamer, D., Dworkin, J. P., Sandford, S. A, Berstein, M. P., and Allamandola, L. J., 2002. The first cell membranes. Astrobiology, 2, 371–382.CrossRefGoogle Scholar
  6. Des Marais, D. J., Nuth, J. A., Allamandola, L. J., Boss, A. P., Farmer, J. D., Hoehler, T. M., Jakosky, B. M., Meadows, V. S., Pohorille, A., Runnegar, B., and Spormann, A. M., 2008. Focus paper: The NASA astrobiology roadmap. Astrobiology, 8, 715–730.CrossRefGoogle Scholar
  7. Dick, S. J., and Strick, J. E., 2004. The Living Universe: NASA and the Development of Astrobiology. New Brunswick, New Jersey: Rutgers University Press.Google Scholar
  8. Farmer, J. D., 2000. Exploring for a fossil record of extraterrestrial life. In Derek Briggs, and Crowther, P. (eds.), Palaeobiology II, Oxford: Blackwell Science Publishers, pp. 10–15.Google Scholar
  9. Farmer, J. D., and Des Marais, D. J., 1999. Exploring for a record of ancient Martian life. Journ. Geophys. Res., 104(E11), 26977–26995.CrossRefGoogle Scholar
  10. Ferris, J. P., 2005. Mineral catalysis and pre-biotic synthesis: Montmorillonite-catalyzed formation of RNA. Elements, 1, 145–149.CrossRefGoogle Scholar
  11. Gold, T., 1998. The Hot Deep Biosphere. New York: Springer.Google Scholar
  12. Greenberg, R., 2008. Unmasking Europa: The Search for Life on Jupiter’s Ocean Moon. New York: Springer.Google Scholar
  13. Hoehler, T. M., Amend, J. P., and Shock, E. L., 2007. A “Follow the Energy” approach for astrobiology. Astrobiology, 7, 819–823.CrossRefGoogle Scholar
  14. Kashefi, K., and Lovley, D. R., 2003. Extending the upper temperature limit for life. Science, 301, 934.CrossRefGoogle Scholar
  15. Kalas, P., Graham, J. R., Chiang, E., Fitzgerald, M. P., Clampin, M., Kite, E. S., Stapelfeldt, K., Marois, C., and Krist, J., 2008. Optical images of an Exosolar Planet 25 light-years from Earth. Science, 322, 1345–1348.CrossRefGoogle Scholar
  16. Kieffer, S. W., Lu, X., Bethke, C. M., Spencer, J. R., Marshak, S., and Navrotsky, A., 2006. A clathrate reservoir hypothesis for Enceladus’s south polar plume. Science, 314, 1764–1766.CrossRefGoogle Scholar
  17. Kivelson, M. G., Khurana, K. K., Russell, C. T., Volwerk, M., Walker, R. J., and Zimmer, C., 2000. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science, 289, 1340–1343.CrossRefGoogle Scholar
  18. Klein, H. P., Lederberg, J., Rich, A., Horowitz, N. H., Oyama, V. I., Levin, G. V., 1976. The viking mission search for life on Mars. Nature, 262, 24–27.CrossRefGoogle Scholar
  19. Knoll, A., Carr, M., Clark, B., Des Marais, D., Farmer, J., Fischer, W., Grotzinger, J., Hayes, A., McLennan, S., Malin, M., Schröder, C., Squyres, S., and Wdowiak, T., 2005. An astrobiological perspective on Meridiani Planum. Earth and Planetary Science Newsletters, 240, 179–189.CrossRefGoogle Scholar
  20. McKay, D. S., Gibson, E. K. Jr., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., and Zare, R. N., 1996. Search for past life on Mars: Possible relic biogenic activity in Martian Meteorite ALH 84001. Science, 273, 924–930.CrossRefGoogle Scholar
  21. McKay, C. P., and Davis, W. L., 1991. Duration of liquid water habitats on early Mars. Icarus, 90, 214–221.CrossRefGoogle Scholar
  22. Mitri, G., Showmana, A. P., Lunine, J. I., and Lorenz, R. D., 2007. Hydrocarbon Lakes on Titan. Icarus, 186, 385–394.CrossRefGoogle Scholar
  23. Mix, L. J., Armstrong, J. C., Mandell, A. M., Mosier, A. C., Raymond, J., Raymond, S. N., Stewart, F. J., von Braun, K., and Zhaxybayeva, O., (eds.), 2006. The astrobiology primer: An outline of general knowledge—Version 1. Astrobiology, 6, 735–813.Google Scholar
  24. National Research Council (NRC), 2007a. Assessment of the NASA Astrobiology Institute, ISBN: 0–309–11498–5, 100 p.Google Scholar
  25. National Research Council (NRC), 2007b. An Astrobiology Strategy for the Exploration of Mars. Washington: National Academies Press.Google Scholar
  26. Plaxco, K. W., and Gross, M., 2006. Astrobiology: A Brief Introduction. Baltimore: Johns Hopkins University Press.Google Scholar
  27. Ricardo, A., Carrigan, M. A., Olcott, A. N., and Benner, S. A., 2004. Borate minerals stabilize ribose. Science, 303, 196.CrossRefGoogle Scholar
  28. Rothschild, L., and Mancinelli, R., 2001. Life in extreme environments. Nature, 409, 1092–1101.CrossRefGoogle Scholar
  29. Russell, M. J., Daniel, R. M., and Hall, A. J., 1993. On the emergence of life via catalytic iron sulfide membranes. Terra Nova, 5, 343–347.CrossRefGoogle Scholar
  30. Staley, J. T., and Reysenbach, A. L., 2001. Biodiversity of Microbial Life: Foundation of Earth’s Biosphere. New Jersey: Wiley.Google Scholar
  31. Stevens, Todd., 1997. Lithoautotrophy in the subsurface. FEMS Microbiology Reviews, 20(3–4), 327–337.CrossRefGoogle Scholar
  32. Schneider, J., 2010. Interactive extra-solar planets catalog. Website: http://exoplanet.eu/catalog.php.
  33. Skelley, A. M., Scherer, J. R., Aubrey, A. D., Grover, W. H., Ivester, R. H. C., Ehrenfreund, P., Grunthaner, F. J., Bada, J. L., and Mathies, R. A., 2005. Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proceedings of the National Academy of Sciences, USA, 102, 1041–1046.CrossRefGoogle Scholar
  34. Sullivan, W. T., III, and Baross, J., 2007. Planets and Life: The Emerging Science of Astrobiology. Cambridge, United Kingdom: Cambridge University Press.Google Scholar
  35. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., and Horikoshi, K., 2008. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences, USA, 105, 10949–10954.CrossRefGoogle Scholar
  36. Warner, N.H., Farmer, J.D., 2010. Sub-glacial hydrothermal alteration minerals in Jokulhlaup deposits in southern Iceland, with implications for detecting past or present habitable environments on Mars. Astrobiology, Volume 10, Number 5, 2010; DOI: 10.1089/ast.2009.0425.Google Scholar
  37. Wharton, R. A., Jr., Crosby, J. M., McKay, C. P., and Rice, J., Jr., 1995. Paleolakes on Mars. Journal of Paleolimnology, 13, 267–283.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jack D. Farmer
    • 1
  1. 1.School of Earth and Space ExplorationArizona State UniversityTempeUSA