Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Methane, Origin

  • Carsten J. Schubert
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_138


Methane is a colorless and odorless gas, with the chemical formula CH4. Due to its radiative force, it is a strong greenhouse gas and contributes to the warming of the earth. It is formed in the environment by methanogenesis. The main natural sources are wetlands and termites (30% of total emissions), while anthropogenic sources include rice fields, cattle farming, and energy production (70% of total emissions).

General aspects

Methane is a colorless and odorless gas and the major component (97% vol.) of natural gas. Methane has a boiling point of −161°C at a pressure of one atmosphere. As a gas, it is flammable only over a narrow range of concentrations (5–15%) in air. It is mainly produced by microorganisms (methanogens) under anoxic conditions in a process called methanogenesis. These conditions exist under water-covered soils, such as rice paddies, tundra, swamps, and marshes, but also in freshwater and marine sediments. Other anoxic environments include ruminant...


Rice Field Methane Emission Carbon Isotopic Composition Atmospheric Methane Hydrogen Isotopic Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Badr, O., Probert, S. D., and Ocallaghan, P. W., 1992. Sinks for atmospheric methane. Applied Energy, 41(2), 137–147.CrossRefGoogle Scholar
  2. Bastviken, D., Cole, J., Pace, M., and Tranvik, L., 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1–12.Google Scholar
  3. Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.CrossRefGoogle Scholar
  4. Boone, D. R., Whitmann, W. B., and Rouvičre, P., 1993. Diversity and taxonomy of methanogens. In Jerry, J. G. (ed.), Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. New York: Chapman Hall, pp. 35–80.Google Scholar
  5. Bréas, O., Guillou, C., Reniero, F., and Wada, E., 2001. Review, the global methane cycle: isotopes and mixing ratios, sources and sinks. Isotopes in Environmental and Health Studies, 37, 257–379.CrossRefGoogle Scholar
  6. Buffett, B., and Archer, D., 2004. Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth and Planetary Science Letters, 227(3–4), 185–199.CrossRefGoogle Scholar
  7. Cao, M. K., Marshall, S., and Gregson, K., 1996. Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. Journal of Geophysical Research-Atmospheres, 101(D9), 14399–14414.CrossRefGoogle Scholar
  8. Cicerone, R. J., and Oremland, R. S., 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2(4), 299–327.CrossRefGoogle Scholar
  9. Denman, K. L. et al., 2007. Couplings between changes in the climate system and biogeochemistry. In Solomon, S. et al. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  10. Dickens, G. R., Oneil, J. R., Rea, D. K., and Owen, R. M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the paleocene. Paleoceanography, 10(6), 965–971.CrossRefGoogle Scholar
  11. Dimitrov, L., 2002. Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf. Continental Shelf Research, 22(16), 2429–2442.CrossRefGoogle Scholar
  12. Dlugokencky, E. J. et al., 2003. Atmospheric methane levels off: temporary pause or a new steady-state? Geophysical Research Letters, 30(19).Google Scholar
  13. Etheridge, D. M., Pearman, G. I., and Fraser, P. J., 1992. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus Series B, 44, 282–294.CrossRefGoogle Scholar
  14. Fung, I. et al., 1991. 3-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research-Atmospheres, 96(D7), 13033–13065.CrossRefGoogle Scholar
  15. Garcia, J. L., Patel, B. K. C., and Ollivier, B., 2000. Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe, 6(4), 205–226.CrossRefGoogle Scholar
  16. Hein, R., Crutzen, P. J., and Heimann, M., 1997. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles, 11(1), 43–76.CrossRefGoogle Scholar
  17. Holzapfel-Pschorn, A., and Seiler, W., 1986. Methane emission during a cultivation period from an Italian rice paddy. Journal of Geophysical Research-Atmospheres, 91(D11), 1803–1814.Google Scholar
  18. Hornafius, J. S., Quigley, D., and Luyendyk, B. P., 1999. The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. Journal of Geophysical Research-Oceans, 104(C9), 20703–20711.CrossRefGoogle Scholar
  19. Hovland, M., and Judd, A. G., 1988. Seabed Pockmarks and Seepages: Impact on Geology, Biology and the Marine Environment. London: Graham and Trotman.Google Scholar
  20. IPCC, 2001. Climate change 2001: the scientific basis. In Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C.A. (eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 881 p.Google Scholar
  21. Judd, A. G., Hovland, M., Dimitrov, L. I., Garcia Gil, S., and Jukes, V., 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2(2), 109–126.CrossRefGoogle Scholar
  22. Kalff, J. 2001. Limnology: Inland water ecosystems. Prentice Hall, 592 p.Google Scholar
  23. Kelly, C. A. et al., 1997. Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environmental Science & Technology, 31(5), 1334–1344.CrossRefGoogle Scholar
  24. Khalil, M. A. K., 2000. Atmospheric methane: an introduction. In Khalil, M.A.K. (ed.), Atmospheric Methane. Berlin, Heidelberg: Springer, pp. 1–8.CrossRefGoogle Scholar
  25. Kvenvolden, K. A., and Lorensen, T. D., 2001. The global occurrence of natural gas hydrate. In Paull, C. K., and Dillon, W. D. (eds), Natural Gas Hydrates: Occurrence, Distribution and Detection. Geophysical Monograph. Washington, DC: American Geophysical Union.Google Scholar
  26. Kvenvolden, K. A., and Rogers, B. W., 2005. Gaia’s breath - global methane exhalations. Marine and Petroleum Geology, 22(4), 579–590.CrossRefGoogle Scholar
  27. McGinnis, D. F., Wüest, A., Schubert, C. J., Klauser, L., Lorke, A., and Kipfer, R., 2005. Upward flux of methane in the Black Sea: does it reach the atmosphere? In Lee, J. H. W., and Lam, K. M. (eds.), Environmental Hydraulics and Sustainable Water Management. London: Taylor & Francis Group, pp. 423–429.Google Scholar
  28. Matthews, E., and Fung, I., 1987. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1(1), 61–86.CrossRefGoogle Scholar
  29. Megonigal, J. P., Hines, M. E., and Visscher, P. T., 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In Schlesinger, W. H. (ed.), Biogeochemistry. Oxford: Elsevier-Pergamon, pp. 317–424.Google Scholar
  30. Milkov, A. V., 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 66(3–4), 183–97.CrossRefGoogle Scholar
  31. Peckmann, J., and Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205(3–4), 443–467.CrossRefGoogle Scholar
  32. Rasmussen, R. A., and Khalil, M. A. K., 1984. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient. Journal of Geophysical Research, 89, 11599–11605.CrossRefGoogle Scholar
  33. Schubert, C. J. et al., 2006. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 8(10), 1844–1856.CrossRefGoogle Scholar
  34. St. Louis, V. L., Kelly, C. A., Duchemin, E., Rudd, J. W. M., and Rosenberg, D. M., 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience, 50(9), 766–775.CrossRefGoogle Scholar
  35. Sloan, E. D., 1998. Clathrate Hydrates of Natural Gas, New York: Marcel Dekker.Google Scholar
  36. Stevens, C. M., and Wahlen, M., 2000. The isotopic composition of atmospheric methane and its sources. In Khalil, M. A. K. (ed.), Atmospheric Methane. Berlin, Heidelberg: Springer, pp. 25–41.CrossRefGoogle Scholar
  37. Tyler, S. C. et al, 1988. Measurements and interpretation of δ13C of methane from termites, rice paddies, and wetlands in Kenya. Global Biogeochemical Cycles, 2(4), 341–355.CrossRefGoogle Scholar
  38. Tyler, S. C., 1991. The global methane budget. In Rogers, J. E., and Whitman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. Washington, DC: American Society for Microbiology, pp. 7–38.Google Scholar
  39. Whiticar, M. J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 219–314.CrossRefGoogle Scholar
  40. Whiticar, M. J., Faber, E., and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - Isotope evidence. Geochimica et Cosmochimica Acta, 50, 693–709.CrossRefGoogle Scholar
  41. Wuebbles, D. J., and Hayhoe, K., 2002. Atmospheric methane and global change. Earth-Science Reviews, 57(3–4), 177–210.CrossRefGoogle Scholar
  42. Zinder, S. H., 1993. Physiological ecology of methanogens. In Jerry, J. G., (ed.), Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, New York: Chapman Hall, pp. 128–206.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Carsten J. Schubert
    • 1
  1. 1.Eawag, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland