Synonyms
Metalloprotein (broader term)
Definition
Enzyme protein containing one or more metal cofactor(s).
Introduction
Metalloenzymes are enzyme proteins containing metal ions (metal cofactors), which are directly bound to the protein or to enzyme-bound nonprotein components (prosthetic groups). About one-third of all enzymes known so far are metalloenzymes (see Holm et al., 1996 for a general overview). Besides enzymes, other metalloproteins are involved in non-enzyme electron transfer reactions (cytochromes), may act as storage (e.g., ferritin for iron) or transport proteins (e.g., transferrin for iron). In the latter groups of proteins, the metal storage is reversible and the metal is a temporary component. Also ribozymes, i.e., RNA molecules with enzyme function may contain structurally and/or functionally important metal ions (mostly divalent metal ions such as Mg2+) and may be therefore termed as metalloenzymes in a broader sense (Sigel and Pyle, 2007).
Though primarily focused...
Bibliography
Adman, E. T., 1991. Copper protein structures. Advances in Protein Chemistry, 42, 145–197.
Anbar, A. D., 2008. Oceans. Elements and evolution. Science, 322, 1481–1483.
Barton, L. L., Goulhen, F., Bruschi, M., Woodards, N. A., Plunkett, R. M., and Rietmeijer, F. J. M., 2007. The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. BioMetals, 20, 291–302.
Bertini, I., Ciurli, S., and Luchinat, C., 1995. The electronic structure of FeS centers in proteins and models. A contribution to the understanding of their electron transfer properties. Structure and Bonding, 83, 1–53.
Carrell, T. G., Tyryshkin, A. M., and Dismukes, G. C., 2002. An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction structures. Journal of Biological Inorganic Chemistry, 7, 2–22.
Chaudhuri, P., Wieghardt, K., Weyhermüller, T., Paine, T. K., Mukherjee, S., and Mukherjee, C., 2005. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes. Biological Chemistry, 386, 1023–1033.
Cowan, J. A., 2002. Structural and catalytic chemistry of magnesium-dependent enzymes. BioMetals, 15, 225–235.
Crans, D. C., Smee, J. J., Galdamauskas, E., and Yang, L., 2004. Chemistry and biology of vanadium and the biological activities exerted by vanadium compounds. Chemistry Reviews, 104, 849–902.
Degtyarenko, K., 2000. Bioorganic motifs: towards functional classification of metalloproteins. Bioinformatics Review, 16, 851–864.
Degtyarenko, K., and Contrino, S. 2004. COMe: the ontology of bioinorganic proteins. BMC Structural Biology, 4, 3.
Ermler, U., Grabarse, W., Shima, S., Goubeaud, M., and Thauer R. K., 1998. Active sites of transition-metal enzymes with a focus on nickel. Current Opinon Structural Biology, 8, 749–758.
Hille, R., 2002. Molybdenum and tungsten in biology. Trends in Biochemical Sciences, 27, 360–367.
Holm, R., Kennepohl, P., and Solomon, E. I., 1996. Structural and functional aspects of metal sites in biology. Chemistry Reviews, 96, 2239–2314.
Kobayashi, M., and Shimizu, S., 1999. Cobalt proteins. European Journal of Biochemistry, 261, 1–9.
Lipscomb, W. N., and Sträter, N., 1996. Recent advances in zinc enzymology. Chemistry Reviews, 96, 2375–2433.
Mauzerall, D. C., 1998. Evolution of porphyrins. Clinics Dermatology, 16, 195–201.
McCall, K. A., Huang, C.-C., and Fierke, C. A., 2000. Function and mechanism of zinc metalloenzymes. Journal of Nutrition, 130, 1437S–1446S.
Michibata, H., Yamaguchi, N., Uyama, T., and Ueki, T., 2003. Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coordination Chemistry Reviews, 237, 41–51.
Nordlund, P., and Eklund, H., 1995. Diiron-carboxylate proteins. Current Opinion in Structural Biology, 5, 758–766.
Ogo, S., Kabe, R., Uehara, K., Kure, B., Nishimura, T., Menon, S. C., Harada, R., Fukuzumi, S., Higuchi, Y., Ohhara, T., Tamada, T., and Kuroki, R., 2007. A dinuclear Ni(µ-H)Ru complex derived from H2. Science, 316, 585–587.
Page, M. J., and Di Cera, E., 2006. Role of Na+ and K+ in enzyme function. Physiological Reviews, 86, 1049–1092.
Que, L. Jr., and Ho, R. Y. N., 1996. Dioxygen activation by enzymes with mononuclear nonheme iron active sites. Chemistry Reviews, 96, 2607–2624.
Raymond, J. R., Siefert, J. L., Staples, C. R., and Blankenship, R. E., 2004. The natural history of nitrogen fixation. Molecular Biology and Evolution, 21, 541–554.
Russell, M. J., and Martin, W., 2004. The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29, 358–363.
Sigel, R. K. O., and Pyle, A. M., 2007. Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chemistry Reviews, 107, 97–113.
Song, L.-C., Yang, Z.-Y., Bian, H.-Z., Liu, Y., Wang, H.-T., Liu, X.-F., and Hu, Q.-M., 2005. Diiron oxadithiolate type models for the active site of iron-only hydrogenases and biomimetic hydrogen evolution catalyzed by Fe2(µ-SCH2OCH2S-µ)(CO)2. Organometallics, 24, 6126–6135.
Szpunar, J., 2005. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst, 130, 442–465.
Wächtershäuser, G., 1990. Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences of the United States of America, 87, 200–204.
Wieghardt, K., 1994. A structural model for the water-oxidizing manganese cluster in photosystem II. Angewandte Chemie International Edition in English, 33, 725–728.
Williams, R. J. P, and Frausto da Silva, J. J. P., 2002. The involvement of molybdenum in life. Biochemical and Biophysical Research Communications, 292, 293–299.
Wilson, C. J., Apiyo, D., and Wittung-Stafshede, P., 2004. Role of cofactors in metalloprotein folding. Quarterly Review of Biophysics, 37, 285–314.
Yang, W., Hsiau-Wei, L., Hellings, H., and Yang, J. D., 2002. Structural analysis, identification, and design of calcium-bindung sites in proteins. Proteins Structure, Function, and Genetics, 47, 344–356.
Yocum, C. F., and Pecoraro, V. L., 1999. Recent advances in the understanding of the biological chemistry of manganese. Current Opinon Structural Biology, 3, 182–187.
Zbaida S., and Kariv, R., 1989. Biomimetic models for monooxygenases. Biopharmaceutics and Drug Disposition, 10, 431–442.
Zerkle, A. L., House, C. H., Cox, R. P., and Canfield, D. E., 2006. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology, 4, 285–297.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media B.V.
About this entry
Cite this entry
Hoppert, M. (2011). Metalloenzymes. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_134
Download citation
DOI: https://doi.org/10.1007/978-1-4020-9212-1_134
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-9211-4
Online ISBN: 978-1-4020-9212-1
eBook Packages: Earth and Environmental ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences