Skip to main content

Hydrothermal Environments, Terrestrial

  • Reference work entry

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Definition

Hydrothermal Environments , Terrestrial. Areas on the Earth’s surface that are under the influence of geothermal waters, steam, and associated gases discharged from hot springs, geysers, and fumaroles.

Introduction

Terrestrial hydrothermal environments are those settings where fluids discharge either at or close to the land surface at a temperature that is significantly above the local ambient air temperature. The hydrothermal processes transfer heat and dissolved matter to the surface in a liquid or vapor (gas) phase. Those fluids originate at variable depths below the Earth’s surface and have a wide range of temperature and chemical composition. Visible features of terrestrial hydrothermal environments include hot springs , geysers , fumaroles , and steam vents. Travertine (calcite and aragonite: CaCO3) and sinter (mainly opal-A: SiO2. nH2O), precipitated from thermal water, commonly form mounds and terraces around many spring and geyser vents. In contrast, chemical...

Keywords

  • Geothermal System
  • Geothermal Field
  • Hydrothermal Environment
  • Taupo Volcanic Zone
  • Chloride Water

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Bargar, K. E., 1978. Geology and thermal history of Mammoth Hot Springs, Yellowstone National Park, Wyoming. United States Geological Survey Bulletin, 1444.

    Google Scholar 

  • Barns, S. M., Fundyga, R. E., Jeffries, M. W., and Pace, N. R., 2004. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proceedings of the National Academy of Sciences of the United States of America, 91, 1609–1613.

    CrossRef  Google Scholar 

  • Baxter, P. J., Baubron, J. C., and Coutinho, R., 1999. Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores. Journal of Volcanology and Geothermal Research, 92, 95–106.

    CrossRef  Google Scholar 

  • Blank, C. E., Cady, S. L., and Pace, N. R., 2002. Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Applied and Environmental Microbiology, 68, 5123–5135.

    CrossRef  Google Scholar 

  • Bock, G. R., and Goode, J. A. (eds.), 1996. Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (CIBA Foundation Symposium 202). Chichester: Wiley.

    CrossRef  Google Scholar 

  • Bogie, I., Lawless, J. V., Rychagov, S., and Belousov, V., 2005. Magmatic-related hydrothermal systems: classification of the types of geothermal systems and their ore mineralization. In Rychagov, S. (ed.), Geothermal and Mineral Resources of Modern Volcanism Areas (Proceedings of the International Kuril-Kamchatka field workshop, July 16–August 6, 2005). Moscow: Óottiskô, pp. 51–73.

    Google Scholar 

  • Brock, T. D., 1978. Thermophilic Organisms and Life and High Temperature. New York: Springer.

    CrossRef  Google Scholar 

  • Browne, P. R. L., and Lawless, J. V., 2001. Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth-Science Reviews, 52, 299–331.

    CrossRef  Google Scholar 

  • Bryan, T. S., 2005. Geysers. What They Are and How They Work, 2nd edn. Missoula, MT: Mountain Press Publishing Co.

    Google Scholar 

  • Bryan, T. S., 2008. The Geysers of Yellowstone, 4th edn. Boulder, CO: University Press of Colorado.

    Google Scholar 

  • Chafetz, H. S., and Folk, R. L., 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Research, 54, 289–316.

    Google Scholar 

  • Craig, H., 1963. The isotopic geochemistry of water and carbon in geothermal areas. In Tongiorgi, E. (ed.), Nuclear Geology in Geothermal Areas. Pisa: Consiglio Nazional delle Ricerche, Laboratorio di Geologia Nuclear, pp. 17–53.

    Google Scholar 

  • Cusicanqui, H., Mahon, W. A. J., and Ellis, A. J., 1976. The geochemistry of the El Tatio Geothermal Field, Northern Chile. In Proceedings of the 2nd United Nations Symposium on Geothermal Fields. Berkeley, CA, pp. 703–711.

    Google Scholar 

  • De Ronde, C. E. J., Stoffers, P., Garbe-Schöberg, D., Christenson, B. W., Jones, B., Manconi, R., Browne, P. R. L., Hissmann, K., Botz, R., Davy, B. W., Schmitt, M., and Battershill, C. N., 2002. Discovery of active hydrothermal venting in Lake Taupo, New Zealand. Journal of Volcanology and Geothermal Research, 115, 257–275.

    CrossRef  Google Scholar 

  • Ellis, A. J., and Mahon, W. A. J., 1977. Chemistry and Geothermal Systems. New York: Academic Press.

    Google Scholar 

  • Fernandez-Turiel, J. L., Garcia-Valles, M., Gimeno-Torrente, D., Saavedra-Alonso, J., and Martinez-Anent, S., 2005. The hot-springs and geyser sinters of El Tatio, Northern Chile. Sedimentary Geology, 180, 125–147.

    CrossRef  Google Scholar 

  • Giggenbach, W. F., 1994. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Economic Geology, 94, 1193–1212.

    Google Scholar 

  • Glover, R. B., 1965. Changes in the Wairakei Geyser Valley Springs 1962–1965. Open File Report, Department of Scientific and Industrial Research, New Zealand.

    Google Scholar 

  • Heiken, G., 1982. Geology of geothermal systems. In Edwards, L. M., Chilingar, G. V., Rieke, H. H., and Fertl, W. H. (eds.), Handbook of Geothermal Energy. Houston, TX: Gulf Publishing, pp. 177–217.

    Google Scholar 

  • Henley, R. W., and Ellis, A. J., 1983. Geothermal systems, ancient and modern: a geochemical review. Earth-Science Reviews, 19, 1–50.

    CrossRef  Google Scholar 

  • Jones, B., and Renaut, R. W. (eds.), 2003a. Sedimentology of hot spring systems. Canadian Journal of Earth Sciences, 40 (Special Issue), 1439–1738.

    CrossRef  Google Scholar 

  • Jones, B., and Renaut, R. W., 2003b. Hot spring and geyser sinters: the integrated product of precipitation, replacement, and deposition. Canadian Journal of Earth Sciences, 40, 1549–1569.

    CrossRef  Google Scholar 

  • Jones, B., and Renaut, R. W., 2006. Selective mineralization of microbes in Fe-rich precipitates (jarosite, hydrous ferric oxides) from acid hot springs in the Waiotapu geothermal area, North Island, New Zealand. Sedimentary Geology, 194, 77–98.

    CrossRef  Google Scholar 

  • Jones, B., Renaut, R. W., and Rosen, M. R., 1997. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand. Journal of Sedimentary Research, 67, 88–104.

    Google Scholar 

  • Jones, B., Renaut, R. W., and Rosen, M. R., 2000. Stromatolites forming in acidic hot-spring waters, North Island, New Zealand. Palaios, 15, 450–475.

    CrossRef  Google Scholar 

  • Jones, B., Renaut, R. W., Rosen, M. R., and Ansdell, K. M., 2002. Coniform stromatolites from geothermal systems, North Island, New Zealand. Palaios, 17, 84–103.

    CrossRef  Google Scholar 

  • Jones, B., Renaut, R. W., Torfason, H., and Owen, R. B., 2007. The historical development of Geysir, Iceland. Journal of the Geological Society (London), 164, 1241–1252.

    CrossRef  Google Scholar 

  • Koch, I., Feldmann, J., Wang, L., Andrewes, P., Reimer, K. J., and Cullen, W. R., 1999. Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. The Science of the Total Environment, 236, 101–117.

    CrossRef  Google Scholar 

  • Krienitz, L., Ballot, A., Kotut, K., Wiegand, C., Pütz, S., Metcalf, J. S., Codd, G. A., and Pflugmacher, S., 2003. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiology Ecology, 43, 141–148.

    CrossRef  Google Scholar 

  • Kühn, M., 2004. Reactive Flow Modeling of Hydrothermal Systems. Berlin: Springer.

    CrossRef  Google Scholar 

  • Lloyd, E. F., and Keam, R. F., 1974. Trinity terrace hydrothermal eruption, Waimangu, New Zealand. New Zealand Journal of Science, 17, 511–528.

    Google Scholar 

  • Nicholson, K., 1993. Geothermal Fluids: Chemistry and Exploration Techniques. Berlin: Springer.

    CrossRef  Google Scholar 

  • Pentecost, A., 2005. Travertine. Berlin: Springer.

    Google Scholar 

  • Pentecost, A., Jones, B., and Renaut, R. W., 2003. What is a hot spring? Canadian Journal of Earth Sciences, 40, 1443–1446.

    CrossRef  Google Scholar 

  • Pirajno, F., 1992. Hydrothermal Mineral Deposits. Berlin: Springer.

    CrossRef  Google Scholar 

  • Renaut, R. W., and Jones, B., 1997. Controls on aragonite and calcite precipitation in hot spring travertines at Chemurkeu, Lake Bogoria, Kenya. Canadian Journal of Earth Sciences, 34, 801–814.

    CrossRef  Google Scholar 

  • Renaut, R. W., and Jones, B., 2000. Microbial precipitates around continental hot springs and geysers. In Riding, R. E., and Awramik, S. M. (eds.), Microbial Sediments. Berlin: Springer, pp. 187–195.

    Google Scholar 

  • Renaut, R. W., and Owen, R. B., 2005. The geysers of Lake Bogoria, Kenya Rift Valley, Africa. GOSA Transactions, 9, 4–18.

    Google Scholar 

  • Reysenbach, A. L., Voytek, M., and Mancinelli, R. (eds.), 2001. Thermophiles: Biodiversity, Ecology and Evolution. New York: Springer.

    CrossRef  Google Scholar 

  • Robb, F., Antranikian, G., Grogan, D., and Driessen, A. (eds.), 2007. Thermophiles: Biology and Technology at High Temperatures. London: Taylor and Francis.

    Google Scholar 

  • Rodgers, K. A., Cook, K. L., Browne, P. R. L., and Campbell, K. A., 2002. The mineralogy, texture and significance of silica derived from alteration by steam condensate in three New Zealand geothermal fields. Clay Minerals, 37, 299–322.

    CrossRef  Google Scholar 

  • Sturchio, N. C., Dunkley, P. N., and Smith, M., 1993. Climate-driven variations in geothermal activity in the northern Kenya Rift Valley. Nature, 362, 233–234.

    CrossRef  Google Scholar 

  • Torfason, H., 1985. The Great Geysir. Reykjavík: Geysir Conservation Committee.

    Google Scholar 

  • Walter, M. R., 1976. Geyserites of Yellowstone National Park: an example of abiogenic “stromatolites”. In Walter, M. R. (ed.), Stromatolites. Amsterdam: Elsevier, pp. 87–112.

    CrossRef  Google Scholar 

  • Wiegel, J., 2007. Thermophiles: The Keys to Molecular Evolution and the Origin of Life? London: Taylor and Francis.

    Google Scholar 

  • Xu, R. H., Yuan, H. H., and Fan, A., 1995. Endemic fluorosis in China from ingestion of food immersed in hot spring water. Bulletin of Environmental Contamination and Toxicology, 54, 337–341.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Renaut, R.W., Jones, B. (2011). Hydrothermal Environments, Terrestrial. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_114

Download citation