Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Archaea

  • Volker Thiel
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_11

Synonyms

Archaebacteria (term abandoned)

Definition

The Archaea are single-celled or filamentous prokaryotes that constitute the third phylogenetic domain of life, besides the  Bacteria and the Eukarya. The word “Archaea” (singular archaeum, archaeon) is derived from the Greek word for “the old ones”.

History

The discovery of the Archaea dates back to 1976 when Carl Woese, at his laboratory at Illinois University, compared prokaryotic small subunit ribosomal RNA sequences using oligonucleotide catalogs (Woese, 2007). Woese recognized Methanobacterium thermoautotrophicum as the first member of a fundamentally distinct group of prokaryotes that clustered away from all other bacteria. Consequently, Woese and Fox ( 1977) established the concept of two separate prokaryotic “urkingdoms ,” Eubacteria and Archaebacteria. Later, the term “Archaebacteria” was changed to “Archaea” to emphasize the fundamental differences between both groups. Based on these discoveries, Woese and his coworkers...

Keywords

Anaerobic Oxidation Halophilic Archaea Anaerobic Methane Oxidizer Seep Carbonate Deep Biosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Barns, S. M., Delwiche, C. F., Palmer, J. D., and Pace, N. R., 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 93, 9188–9193.CrossRefGoogle Scholar
  2. Barns, S. M., and Nierzwicki-Bauer, S. A., 1997. Microbial diversity in ocean, surface and subsurface environments. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions between Microbes and Minerals. Reviews in Mineralogy and Geochemistry. Washington, DC: Mineralogical Society of America and Geochemical Society, Vol. 35, pp. 35–79.Google Scholar
  3. Battistuzzi, F. U., Feijao, A., and Hedges, S. B., 2004. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology, 4, 44–58.CrossRefGoogle Scholar
  4. Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E., and Fuchs, G., 2010. Autotrophic carbon fixation in Archaea. Nature Reviews Microbiology, 8, 447–460.CrossRefGoogle Scholar
  5. Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.CrossRefGoogle Scholar
  6. Bond, D. R., and Lovley, D. R., 2002. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinines. Environmental Microbiology, 4(2), 115–124.CrossRefGoogle Scholar
  7. Cabello, P., Roldán, M. D., and Moreno-Vivián, C., 2004. Nitrate reduction and the nitrogen cycle in archaea. Microbiology, 150, 3527–3546.CrossRefGoogle Scholar
  8. DeRosa, M., and Gambacorta, A., 1988. The lipids of Archaebacteria. Progress in Lipid Research, 27, 153–175.CrossRefGoogle Scholar
  9. Eckburg, P. B., Bik, E. M., Bernstein, C. N., et al., 2005. Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.CrossRefGoogle Scholar
  10. Giovannoni, S., and Rappé, M., 2000. Evolution, diversity and molecular ecology of marine prokaryotes. In Kirchman, D. L. (ed.), Microbial Ecology of the Oceans. New York: Wiley, pp. 47–84.Google Scholar
  11. Graham, D. E., Overbeek, R., Olsen, G. J., and Woese, C. R., 2000. An archaeal genomic signature. Proceedings of the National Academy of Sciences of the United States of America, 97, 3304–3308.CrossRefGoogle Scholar
  12. Gribaldo, S., and Brochier-Armanet, C., 2006. The origin and evolution of Archaea: a state of the art. Philosophical Transactions of the Royal Society B, 361, 1007–1022.CrossRefGoogle Scholar
  13. Hallbeck, L., and Pedersen, K., 2008. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Applied Geochemistry, 23, 1796–1819.CrossRefGoogle Scholar
  14. Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G., and DeLong, E. F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–805.CrossRefGoogle Scholar
  15. Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8, 451–463.CrossRefGoogle Scholar
  16. Hopmans, E. C., Schouten, S., Pancost, R. D., van der Meer, M. T. J., and Sinninghe Damsté, J. S., 2000. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 14, 585–589.CrossRefGoogle Scholar
  17. Huber, H., and Rachel, R., 2007. Nanoarchaeota. In Garrett, R., and Klenk, H.-P. (eds.), Archaea: Evolution, Physiology and Molecular Biology. Oxford: Blackwell, pp. 51–59.Google Scholar
  18. Huber, R., Stoffers, P., Cheminee, J. L., Richnow, H. H., and Stetter, K. O., 1990. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature, 345, 179–181.CrossRefGoogle Scholar
  19. Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report 2007 (AR4); Working Group I Report “The physical science basis”, Ch. 2.Google Scholar
  20. Kandler, O., and König, H., 1998. Cell wall polymers in Archaea (Archaebacteria). Cellular and Molecular Life Sciences, 54, 305–308.CrossRefGoogle Scholar
  21. Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A. L., and Lovley, D. R., 2002. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. International Journal of Systematic and Evolutionary Microbiology, 52, 719–728.CrossRefGoogle Scholar
  22. Kenward, P. A., Goldstein, R. G., Gonzalez, L. A., and Roberts, J. A., 2009. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology, 7, 556–565.CrossRefGoogle Scholar
  23. Knittel, K., and Boetius, A., 2009. Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63, 311–334.CrossRefGoogle Scholar
  24. Koga, Y., Nishihara, M., Morii, H., and Akagawa-Matsushita, M., 1993. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiological Reviews, 57, 164–182.Google Scholar
  25. Kuypers, M. M. M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R. D., Schouten, S., and Sinninghe Damsté, J. S., 2001. Massive expansion of marine archaea during a mid-creatceous oceanic anoxic event. Science, 293, 92–94.CrossRefGoogle Scholar
  26. Lipp, J. S., Morono, Y., Inagaki, F., and Hinrichs, K. U., 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454, 991–994.CrossRefGoogle Scholar
  27. Madigan, M. T., and Martinko, J. M., 2006. Brock Biology of Microorganisms, 11th edn. Englewood Cliffs NJ: Prentice Hall.Google Scholar
  28. Margot, H., Acebal, C., Toril, E., Amils, R., and Fernandez Puentes, J. L., 2002. Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Marine Biology, 140, 739–745.CrossRefGoogle Scholar
  29. Mascarelli, A. L., 2009. A sleeping giant? Nature Reports, Climate Change, 3, 46–49.Google Scholar
  30. Moore, T. S., Murray, R. W., Kurtz, A. C., and Schrag, D. P., 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229, 141–154.CrossRefGoogle Scholar
  31. Nicol, G. W., and Schleper, C., 2006. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends in Microbiology, 14, 207–212.CrossRefGoogle Scholar
  32. Peckmann, J., and Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205, 443–467.CrossRefGoogle Scholar
  33. Pedersen, K., 1997. Microbial life in deep granitic rock. FEMS (Federation of European Microbiological Societies) Microbiology Reviews, 20, 399–414.CrossRefGoogle Scholar
  34. Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J., Ettwig, K. F., Rijpstra, W. I., Schouten, S., Damsté, J. S., Op den Camp, H. J., Jetten, M. S., and Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 878–879.CrossRefGoogle Scholar
  35. Reitner, J., Peckmann, J., Reimer, A., Schumann, G., and Thiel, V., 2005. Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies, 51, 66–79.CrossRefGoogle Scholar
  36. Roberts, J. A., Bennett, P. C., Gonzalez, L. A., Macpherson, G. L., and Milliken, K. L., 2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32, 277–280.CrossRefGoogle Scholar
  37. Schleper, C., 2007. Diversity of uncultivated Archaea: perspectives from microbial ecology and metagenomics. In Garrett, R., and Klenk, H.-P. (eds.), Archaea: Evolution, Physiology and Molecular Biology. Oxford: Blackwell, pp. 39–53.Google Scholar
  38. Stams, A. J. M., and Plugge, C. M., 2009. Electron transfer in syntrophic communities of anaerobic bacteria and Archaea. Nature Reviews Microbiology, 7, 568–577.CrossRefGoogle Scholar
  39. Takai, K., and Horikoshi, K., 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152, 1285–1297.Google Scholar
  40. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., and Horikoshi, K., 2008. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10949–10954.CrossRefGoogle Scholar
  41. Terzi, C., Aharon, P., Ricci Lucchi, F., and Vai, G. B., 1994. Petrography and stable isotope aspects of cold-vent activity imprinted on Miocene-age “calcari a Lucina” from Tuscan and Romagna Apennines, Italy. Geo-Marine Letters, 14, 177–184.CrossRefGoogle Scholar
  42. van Hoek, A. H. A. M., van Alen, T. A., Sprakel, V. S. I., Leunissen, J. A. M., Brigge, T., Vogels, G. D., and Hackstein, J. H. P., 2000. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Molecular Biology and Evolution, 17, 251–258.CrossRefGoogle Scholar
  43. Woese, C. R., 2007. The birth of the Archaea: a personal retrospective. In Garrett, R., and Klenk, H.-P. (eds.), Archaea: Evolution, Physiology and Molecular Biology. Oxford: Blackwell, pp. 1–15.Google Scholar
  44. Woese, C. R., and Fox, G. E., 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74, 5088–5090.CrossRefGoogle Scholar
  45. Woese, C. R., Kandler, O., and Wheelis, M., 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87, 4576–4579.CrossRefGoogle Scholar
  46. Wright, A. D. G., Toovey, A. F., and Pimm, C. L., 2006. Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea. Anaerobe, 12, 134–139.CrossRefGoogle Scholar
  47. Zachos, J. C., Dickens, G. R., and Zeebe, R. E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Volker Thiel
    • 1
  1. 1.Geobiology Group Geoscience CenterUniversity of GöttingenGöttingenGermany