Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Anaerobic Oxidation of Methane with Sulfate

  • Katrin Knittel
  • Antje Boetius
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_10


Anaerobic oxidation of methane (AOM): microbially mediated oxidation of methane to CO2 by electron acceptors other than oxygen.


Methane is the most abundant hydrocarbon in the atmosphere, and an important greenhouse gas (see Methane, Origin). A great deal of research has focused on the cause and climatic consequences of the variation in fluxes of methane to the atmosphere, throughout the Earth’s history. Three key functional groups of microbial organisms play a central role in regulating the fluxes of methane on the Earth, namely the methanogens, the aerobic methanotrophic bacteria, and the more recently discovered anaerobic methanotrophic archaea (ANME) . It is estimated that AOM is a major sink for methane on the Earth, and of similar relevance as its photooxidation in the atmosphere (Hinrichs and Boetius, 2002; Reeburgh, 2007).

Today, most methane is produced by methanogenesis, i.e., the final step in the fermentation of organic matter taking place in soils,...


Methane Hydrate Cold Seep mcrA Gene Methane Seep Hydrate Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., and Krüger, M., 2006. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environmental Microbiology, 8, 574–590.CrossRefGoogle Scholar
  2. Aloisi, G., Bouloubassi, I., Heijs, S. K., Pancost, R. D., Pierre, C., Damsté, J. S. S., Gottschal, J. C., Forney, L. J., and Rouchy, J.M., 2002. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth and Planetary Science Letters, 203, 195–203.CrossRefGoogle Scholar
  3. Arakawa, S., Sato, T., Sato, R., Zhang, J., Gamo, T., Tsunogai, U., Hirota, A., Yoshida, Y., Usami, R., Inagaki, F., and Kato, C., 2006a. Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea. Extremophiles, 10, 311–319.CrossRefGoogle Scholar
  4. Arakawa, S., Sato, T., Yoshida, Y., Usami, R., and Kato, C., 2006b. Comparison of microbial diversity in cold-seep sediments from different depths in the Nankai Trough. Journal of General and Applied Microbiology, 52, 47–54.CrossRefGoogle Scholar
  5. Barnes, R. O., and Goldberg, E. D., 1976. Methane production and consumption in anoxic marine sediments. Geology, 4, 297-300.CrossRefGoogle Scholar
  6. Biddle, J. F., Lipp, J. S., Lever, M. A., Lloyd, K. G., Sorensen, K. B., Anderson, R., Fredricks, H. F., Elvert, M., Kelly, T. J., Schrag, D. P., Sogin, M. L., Brenchley, J. E., Teske, A., House, C. H., and Hinrichs, K.-U., 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 103, 3846–3851.CrossRefGoogle Scholar
  7. Blumenberg, M., Seifert, R., Reitner, J., Pape, T., and Michaelis, W., 2004. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National Academy of Sciences of the United States of America United States of America, 101, 11111–11116.CrossRefGoogle Scholar
  8. Blumenberg, M., Seifert, R., Nauhaus, K., Pape, T., and Michaelis, W., 2005. In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Applied and Environmental Microbiology, 71, 4345–4351.CrossRefGoogle Scholar
  9. Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.CrossRefGoogle Scholar
  10. Boetius, A., Holler, T., Knittel, K., Felden, J., and Wenzhöfer, F., 2008. The seabed as natural laboratory: lessons from uncultivated methanotrophs. In Epstein, S. S. (ed.), Uncultivated Microorganisms. Heidelberg, Germany: Springer.Google Scholar
  11. Brazelton, W. J., Schrenk, M. O., Kelley, D. S., and Baross, J. A., 2006. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Applied and Environmental Microbiology, 72, 6257–6270.CrossRefGoogle Scholar
  12. Cordes, E. E., Arthur, M. A., Shea, K., Arvidson, R. S., and Fisher, C. R., 2005. Modeling the mutualistic interactions between tubeworms and microbial consortia. PLoS Biology, 3, 1–10.CrossRefGoogle Scholar
  13. Dhillon, A., Lever, M., Lloyd, K. G., Albert, D. B., Sogin, M. L., and Teske, A., 2005. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Applied and Environmental Microbiology, 71, 4592–4601.CrossRefGoogle Scholar
  14. D'Hondt, S., Jorgensen, B. B., Miller, D. J., Batzke, A., Blake, R., Cragg, B. A., Cypionka, H., Dickens, G. R., Ferdelman, T., Hinrichs, K.-U., Holm, N. G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S. D., Sass, H., Skilbeck, C. G., Aiello, I. W., Guerin, G., House, C. H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R. J., Schippers, A., Smith, D. C., Teske, A., Wiegel, J., Padilla, C. N., and Acosta, J. L. S., 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306, 2216–2221.CrossRefGoogle Scholar
  15. Durisch-Kaiser, E., Klauser, L., Wehrli, B., and Schubert, C., 2005. Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column. Applied and Environmental Microbiology, 71, 8099–8106.CrossRefGoogle Scholar
  16. Eller, G., Kanel, L. K., and Kruger, M., 2005. Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plusssee. Applied and Environmental Microbiology, 71, 8925–8928.CrossRefGoogle Scholar
  17. Ettwig, K. F., Shima, S., van de Pas-Schoonen K. T., Kahnt, J., Medema, M. H., Op den Camp, H. J., Jetten, M. S., Strous, M., 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ. Microbiol. 10, 3164–3173.CrossRefGoogle Scholar
  18. Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M., Strous, M., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464, 543–548.CrossRefGoogle Scholar
  19. Fang, J. S., Shizuka, A., Kato, C., and Schouten, S., 2006. Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiology Ecology, 57, 429–441.CrossRefGoogle Scholar
  20. Girguis, P. R., Orphan, V. J., Hallam, S. J., and DeLong, E. F., 2003. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Applied and Environmental Microbiology, 69, 5472–5482.CrossRefGoogle Scholar
  21. Girguis, P. R., Cozen, A. E., and DeLong, E. F., 2005. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Applied and Environmental Microbiology, 71, 3725–3733.CrossRefGoogle Scholar
  22. Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M., and DeLong, E. F., 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Applied and Environmental Microbiology, 69, 5483–5491.CrossRefGoogle Scholar
  23. Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., and DeLong, E. F., 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305, 1457–1462.CrossRefGoogle Scholar
  24. Hansen, L. B., Finster, K., Fossing, H., and Iversen, N., 1998. Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aquatic Microbial Ecology, 14, 195–204.CrossRefGoogle Scholar
  25. Heijs, S. K., Sinninghe Damsté, J. S., and Forney, L. J., 2005. Characterization of a deep-sea microbial mat from an active cold seep at the Milano mud volcano in the Eastern Mediterranean Sea. FEMS Microbiology Ecology, 54, 47–56.CrossRefGoogle Scholar
  26. Heijs, S. K., Haese, R. R., van der Wielen, P., Forney, L. J., and van Elsas, J. D., 2007. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep. Microbial Ecology, 53, 384–398.CrossRefGoogle Scholar
  27. Hinrichs, K.-U., and Boetius, A., 2002. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B. B., Schlüter, M., and van Weering, T. (ed.), Ocean Margin Systems. Berlin, Heidelberg: Springer, pp. 457–477.Google Scholar
  28. Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G., and DeLong, E. F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–805.CrossRefGoogle Scholar
  29. Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8, 451–463.CrossRefGoogle Scholar
  30. Inagaki, F., Tsunogai, U., Suzuki, M., Kosaka, A., Machiyama, H., Takai, K., Nunoura, T., Nealson, K. H., and Horikoshi, K., 2004. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Applied and Environmental Microbiology, 70, 7445–7455.CrossRefGoogle Scholar
  31. Inagaki, F., Kuypers, M. M. M., Tsunogai, U., Ishibashi, J., Nakamura, K., Treude, T., Ohkubo, S., Nakaseama, M., Gena, K., Chiba, H., Hirayama, H., Nunoura, T., Takai, K., Jørgensen, B. B., Horikoshi, K., and Boetius, A., 2006a. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proceedings of the National Academy of Sciences of the United States of America, 103, 14164–14169.CrossRefGoogle Scholar
  32. Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F. S., Nealson, K. H., Horikoshi, K., D'Hondt, S., and Jorgensen, B. B., 2006b. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proceedings of the National Academy of Sciences of the United States of America, 103, 2815–2820.CrossRefGoogle Scholar
  33. Ishii, K., Mußmann, M., MacGregor, B. J., and Amann, R., 2004. An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiology Ecology, 50, 203–212.CrossRefGoogle Scholar
  34. Iversen, N., and Jørgensen, B. B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30, 944–955.CrossRefGoogle Scholar
  35. Joye, S. B., Boetius, A., Orcutt, B. N., Montoya, J. P., Schulz, H. N., Erickson, M. J., and Lugo, S. K., 2004. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology, 205, 219–238.CrossRefGoogle Scholar
  36. Judd, A., and Hovland, M. (eds.), 2007. Seabed Fluid Flow. Cambridge: Cambridge University Press, p. 475.Google Scholar
  37. Kallmeyer, J., and Boetius, A., 2004. Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Applied and Environmental Microbiology, 70, 1231–1233.CrossRefGoogle Scholar
  38. Kelley, D. S., Karson, J. A., Fruh-Green, G. L., Yoerger, D. R., Shank, T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J., Proskurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glickson, D., Buckman, K., Bradley, A. S., Brazelton, W. J., Roe, K., Elend, M. J., Delacour, A., Bernasconi, S. M., Lilley, M. D., Baross, J. A., Summons, R. E., and Sylva, S. P., 2005. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science, 307, 1428–1434.CrossRefGoogle Scholar
  39. Knittel, K., and Boetius, A., 2009. The anaerobic oxidation of methane - progress with an unknown process. Annual Reviews of Microbiology, 63, 311–334.CrossRefGoogle Scholar
  40. Knittel, K., Boetius, A., Lemke, A., Eilers, H., Lochte, K., Pfannkuche, O., Linke, P., and Amann, R., 2003. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, OR). Geomicrobiology Journal, 20, 269–294.CrossRefGoogle Scholar
  41. Knittel, K., Lösekann, T., Boetius, A., Kort, R., and Amann, R., 2005. Diversity and distribution of methanotrophic archaea (ANME) at cold seeps. Applied and Environmental Microbiology, 71, 467–479.CrossRefGoogle Scholar
  42. Krüger, M., Meyerdierks, A., Glöckner, F. O., Amann, R., Widdel, F., Kube, M., Reinhardt, R., Kahnt, J., Böcher, R., Thauer, R. K., and Shima, S., 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature, 426, 878–881.CrossRefGoogle Scholar
  43. Lanoil, B. D., La Duc, M. T., Wright, M., Kastner, M., Nealson, K. H., and Bartlett, D., 2005. Archaeal diversity in ODP legacy borehole 892b and associated seawater and sediments of the Cascadia Margin. FEMS Microbiology Ecology, 54, 167–177.CrossRefGoogle Scholar
  44. Lloyd, K. G., Lapham, L., and Teske, A., 2006. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Applied and Environmental Microbiology, 72, 7218–7230.CrossRefGoogle Scholar
  45. Lösekann, T., Knittel, K., Nadalig, T., Fuchs, B., Niemann, H., Boetius, A., and Amann, R., 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Applied and Environmental Microbiology, 73, 3348–3362.CrossRefGoogle Scholar
  46. Martens, C. S., and Berner, R. A., 1977. Interstitial water chemistry of Long Island sound sediments, I, dissolved gases. Limnology and Oceanography, 22, 10–25.CrossRefGoogle Scholar
  47. Martinez, R. J., Mills, H. J., Story, S., and Sobecky, P. A., 2006. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environmental Microbiology, 8, 1783–1796.CrossRefGoogle Scholar
  48. Meyerdierks, A., Kube, M., Kostadinov, I., Teeling, H., Glöckner, F. O., Reinhardt, R., and Amann, R., 2009. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environmental Microbiology, 12, 422–439.CrossRefGoogle Scholar
  49. Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jørgensen, B. B., Widdel, F., Peckmann, J., Pimenov, N. V., and Gulin, M. B., 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013–1015.CrossRefGoogle Scholar
  50. Mills, H. J., Hodges, C., Wilson, K., MacDonald, I. R., and Sobecky, P. A., 2003. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiology Ecology, 46, 39–52.CrossRefGoogle Scholar
  51. Mills, H. J., Martinez, R. J., Story, S., and Sobecky, P. A., 2004. Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities form Gulf of Mexico cold-seep sediments. Applied and Environmental Microbiology, 70, 5447–5458.CrossRefGoogle Scholar
  52. Mills, H. J., Martinez, R. J., Story, S., and Sobecky, P. A., 2005. Characterization of microbial community structure in Gulf of mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Applied and Environmental Microbiology, 71, 3225–3247.Google Scholar
  53. Nauhaus, K., Boetius, A., Krüger, M., and Widdel, F., 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology, 4, 296–305.CrossRefGoogle Scholar
  54. Nauhaus, K., Treude, T., Boetius, A., and Krüger, M., 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I- and ANME-II-communities. Environmental Microbiology, 7, 98–106.CrossRefGoogle Scholar
  55. Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A., and Widdel, F., 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environmental Microbiology, 9, 187–196.CrossRefGoogle Scholar
  56. Newberry, C. J., Webster, G., Cragg, B. A., Parkes, R. J., Weightman, A. J., and Fry, J. C., 2004. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, ocean drilling program leg 190. Environmental Microbiology, 6, 274–287.CrossRefGoogle Scholar
  57. Niemann, H., Elvert, M., Hovland, M., Orcutt, B., Judd, A., Suck, I., Gutt, J., Joye, S., Damm, E., Finster, K., and Boetius, A., 2005. Methane emission and consumption at a North Sea gas seep (Tommeliten Area). Biogeosciences, 2, 335–351.CrossRefGoogle Scholar
  58. Niemann, H., Duarte, J., Hensen, C., Omoregie, E., Magalhaes, V. H., Elvert, M., Pinheiro, L. M., Kopf, A., and Boetius, A., 2006a. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochimica et Cosmochimica Acta, 70, 5336–5355.CrossRefGoogle Scholar
  59. Niemann, H., Lösekann, T., DeBeer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schlüter, M., Klages, M., Foucher, J. P., and Boetius, A., 2006b. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443, 854–858.CrossRefGoogle Scholar
  60. Nunoura, T., Oida, H., Toki, T., Ashi, J., Takai, K., and Horikoshi, K., 2006. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiology Ecology, 57, 149–157CrossRefGoogle Scholar
  61. Omoregie, E. O., Mastalerz, V., de Lange, G., Straub, K. L., Kappler, A., et al. 2008. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren Mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Applied and Environmental Microbiology, 74, 3198–3215.CrossRefGoogle Scholar
  62. Orcutt, B., Boetius, A., Elvert, M., Samarkin, V., and Joye, S. B., 2005. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochimica et Cosmochimica Acta, 69, 4267, 5633–5633.Google Scholar
  63. Orphan, V. J., Hinrichs, K.-U., Ussler, W. III, Paull, C. K., Taylor, L. T., Sylva, S. P., Hayes, J. M., and DeLong, E. F., 2001a. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology, 67, 1922–1934.CrossRefGoogle Scholar
  64. Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D., and DeLong, E. F., 2001b. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 484–487.CrossRefGoogle Scholar
  65. Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D., and DeLong, E. F., 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the United States of America, 99, 7663–7668.CrossRefGoogle Scholar
  66. Parkes, R. J., Cragg, B. A., Banning, N., Brock, F., Webster, G., Fry, J. C., Hornibrook, E., Pancost, R. D., Kelly, S., Knab, N., Jorgensen, B. B., Rinna, J., and Weightman, A. J., 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environmental Microbiology, 9, 1146–1161.CrossRefGoogle Scholar
  67. Pernthaler, A., Dekas, A. E., Brown, C. T., Goffredi, S. K., Embaye, T., and Orphan, V. J., 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proceedings of the National Academy of Sciences of the United States of America, 105, 7052–7057.CrossRefGoogle Scholar
  68. Pimenov, N. V., Rusanov, I. I., Poglazova, M. N., Mityushina, L. L., Sorokin, D. Y., Khmelenina, V. N., and Trotsenko, Y. A., 1997. Bacterial mats on coral-like structures at methane seeps in the Black Sea. Microbiology (translated from Mikrobiologiya), 66, 354–360.Google Scholar
  69. Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Damsté, J. S. S., Op den Camp, H. J. M., Jetten, M. S. M., and Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918–921.CrossRefGoogle Scholar
  70. Rappe, M. S., and Giovannoni, S. J., 2003. The uncultured microbial majority. Annual Review of Microbiology, 57, 369–394.CrossRefGoogle Scholar
  71. Reeburgh, W. S., 1969. Observations of gases in Chesapeake Bay sediments. Limnology and Oceanography, 14, 368–375.CrossRefGoogle Scholar
  72. Reeburgh, W. S., 1976. Methane consumption in Cariaco trench waters and sediments. Earth and Planetory Science Letters, 28, 337–344.CrossRefGoogle Scholar
  73. Reeburgh, W. S., 2007. Oceanic methane biogeochemistry. Chemical Reviews, 107, 486–513.CrossRefGoogle Scholar
  74. Reeburgh, W. S., Ward, B. B., Whalen, S. C., Sandbeck, K. A., Kilpatrick, K. A., and Kerkhof, L. J., 1991. Black Sea methane geochemistry. Deep Sea Research, 38 (Supplement 2), S1189–S1210.Google Scholar
  75. Reed, A. J., Lutz, R. A., and Vetriani, C., 2006. Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida escarpment. Extremophiles, 10, 199–211.CrossRefGoogle Scholar
  76. Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A., and Thiel, V., 2005a. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 18–30.CrossRefGoogle Scholar
  77. Reitner, J., Peckmann, J., Reimer, A., Schumann, G., and Thiel, V., 2005b. Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean Shelf (Black Sea). Facies, 51, 66–79.CrossRefGoogle Scholar
  78. Rossel, P., Fredricks, H., Lipp, J., Arnds, J., Boetius, A., Elvert, M., and Hinrichs, K.-U., 2008. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Organic Geochemistry, 39, 992–999CrossRefGoogle Scholar
  79. Sahling, H., Rickert, D., Lee, R. W., Linke, P., and Suess, E., 2002. Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series, 231, 121–138.CrossRefGoogle Scholar
  80. Schouten, S., Wakeham, S. G., Hopmans, E. C., and Sinninghe Damsté, J. S., 2003. Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Applied and Environmental Microbiology, 69, 1680–1686.CrossRefGoogle Scholar
  81. Schreiber, L., Holler, T., Knittel, K., Meyerdierks, A., Amann, R. (in press). Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environmental Microbiology.Google Scholar
  82. Schrenk, M. O., Kelley, D. S., Bolton, S. A., and Baross, J. A., 2004. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City hydrothermal field, Mid-Atlantic Ridge. Environmental Microbiology, 6, 1086–1095.CrossRefGoogle Scholar
  83. Schubert, C. J., Coolen, M. J. L., Neretin, L. N., Schippers, A., Abbas, B., Durisch-Kaiser, E., Wehrli, B., Hopmans, E. C., Sinninghe Damste, J. S., Wakeham, S., and Kuypers, M. M. M., 2006a. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 8, 1844–1856.CrossRefGoogle Scholar
  84. Schubert, C. J., Durisch-Kaiser, E., Holzner, C. P., Klauser, L., Wehrli, B., Schmale, O., Greinert, J., McGinnis, D. F., DeBatist, M., and Kipfer, R., 2006b. Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. Geochemistry, Geophysics, Geosystems, 7, Q04002, doi:10.1029/2005GC001049.CrossRefGoogle Scholar
  85. Shima, S., and Thauer, R. K., 2005. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic archaea. Current Opinion in Microbiology, 8, 643–648.CrossRefGoogle Scholar
  86. Sibuet, M., and Olu, K., 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research II, 45, 517–567.CrossRefGoogle Scholar
  87. Sorensen, K. B., and Teske, A., 2006. Stratified communities of active archaea in deep marine subsurface sediments. Applied and Environmental Microbiology, 72, 4596–4603.CrossRefGoogle Scholar
  88. Stadnitskaia, A., Muyzer, G., Abbas, B., Coolen, M. J. L., Hopmans, E. C., Baas, M., van Weering, T. C. E., Ivanov, M. K., Poludetkina, E., and Sinninghe Damsté, J. S., 2005. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Marine Geology, 217, 67–96.CrossRefGoogle Scholar
  89. Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., and Hinrichs, K.-U., 2004. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry, 18, 617–628.CrossRefGoogle Scholar
  90. Takai, K., and Horikoshi, K., 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152, 1285–1297.Google Scholar
  91. Teske, A., Hinrichs, K.-U., Edgcomb, V., de Vera Gomez, A., Kysela, D., Sylva, S. P., Sogin, M. L., and Jannasch, H. W., 2002. Microbial diversity of hydrothermal sediments in the guaymas basin: evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology, 68, 1994–2007.CrossRefGoogle Scholar
  92. Thiel, V., Peckmann, J., Richnow, H. H., Luth, U., Reitner, J., and Michaelis, W., 2001. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chemistry, 73, 97–112.CrossRefGoogle Scholar
  93. Thiel, V., Blumenberg, M., Pape, T., Seifert, R., and Michaelis, W., 2003. Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 34, 81–87.CrossRefGoogle Scholar
  94. Thiel, V., Heim, C., Arp, G., Hahmann, U., Sjovall, P., and Lausmaa, J., 2007. Biomarkers at the microscopic range: ToF-SIMS molecular imaging of archaea-derived lipids in a microbial mat. Geobiology, 5, 413–421.CrossRefGoogle Scholar
  95. Thomsen, T. R., Finster, K., and Ramsing, N. B., 2001. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Applied and Environmental Microbiology, 67, 1646–1656.CrossRefGoogle Scholar
  96. Tourova, T. P., Kolganov, T. V., Kuznetsov, B. B., and Pimenov, N. V., 2002. Phylogenetic diversity of the archaeal component in microbial mats on coral-like structures associated with methane seeps in the Black Sea. Microbiology (translated from Mikrobiologiya), 71, 230–236.Google Scholar
  97. Treude, T., Boetius, A., Knittel, K., Wallmann, K., and Jørgensen, B. B., 2003. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Marine Ecology Progress Series, 264, 1–14.CrossRefGoogle Scholar
  98. Treude, T., Knittel, K., Blumenberg, M., Seifert, R., and Boetius, A., 2005a. Subsurface microbial methanotrophic mats in the Black Sea. Applied and Environmental Microbiology, 71, 6375–6378.CrossRefGoogle Scholar
  99. Treude, T., Krüger, M., Boetius, A., and Jørgensen, B. B., 2005b. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnology and Oceanography, 50, 1771–1786.CrossRefGoogle Scholar
  100. Treude, T., Orphan, V., Knittel, K., Gieseke, A., House, C., and Boetius, A., 2007. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Applied and Environmental Microbiology, 73, 2271–2283.CrossRefGoogle Scholar
  101. Vetriani, C., Tran, H. V., and Kerkhof, L. J., 2003. Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Applied and Environmental Microbiology, 69, 6481–6488.CrossRefGoogle Scholar
  102. Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S., 2003. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochimica et Cosmochimica Acta, 67, 1359–1374.CrossRefGoogle Scholar
  103. Webster, G., Parkes, R. J., Cragg, B. A., Newberry, C. J., Weightman, A. J., and Fry, J. C., 2006. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiology Ecology, 58, 65–85.CrossRefGoogle Scholar
  104. Wegener, G., Shovitri, M., Knittel, K., Niemann, H., Hovland, M., and Boetius, A., 2008. Gullfaks and Tommeliten: microbiological and geochemical description of two of the most active seepage sites of the North Sea. Biogeosciences, 5, 1127–1144.CrossRefGoogle Scholar
  105. Zehnder, A. J. B., and Brock, T. D., 1979. Methane formation and methane oxidation by methanogenic bacteria. Journal of Bacteriology, 137, 420–432.Google Scholar
  106. Zehnder, A. J. B., and Brock, T. D., 1980. Anaerobic methane oxidation: occurrence and ecology. Applied and Environmental Microbiology, 39, 194–204.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Katrin Knittel
    • 1
  • Antje Boetius
    • 1
  1. 1.Department of Molecular EcologyMax Planck Institute for Marine MicrobiologyBremenGermany