Encyclopedia of Sciences and Religions

2013 Edition
| Editors: Anne L. C. Runehov, Lluis Oviedo

Molecular Modeling

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-8265-8_717

Related Terms

 Computational chemistry;  Quantum chemistry;  Quantum physics;  Theoretical chemistry

Nowadays, one of the most important research fields in chemistry is the study of large systems. In this sense, one of the most active research areas is the field of supramolecular chemistry, chemistry of big molecules (Atwood and Lehn 1996), which involves the use of noncovalent interactions to assemble molecules into stable, well-defined structures and which plays an important role in biological processes. Thus, it is crucial to examine the interactions between molecules and their environment. Well-known systems include host-guest and protein-substrate complexes, molecular clusters, or simply molecules within their medium.

Currently, there is great interest in the theoretical study of supramolecular systems. Molecular modeling includes all theoretical methods and computational techniques used to model or mimic the nature. The techniques are used in the fields of computational chemistry...

This is a preview of subscription content, log in to check access.


  1. Atwood, J. L., & Lehn, J.-M. (Eds.). (1996). Comprehensive supramolecular chemistry. Oxford, UK: Pergamon.Google Scholar
  2. Bernal-Uruchurtu, M. I., Martins-Costa, M. T. C., Millot, C., & Ruiz-López, M. F. (2000). Improving description of hydrogen bonds at the semiempirical level: Water–water interactions as test case. Journal of Computational Chemistry, 21, 572–581.Google Scholar
  3. Casadesús, R., Moreno, M., & Lluch, J. M. (2002). The photoinduced intramolecular proton transfer in 2-(2′-hydroxyphenyl)-4-methyloxazole embedded in β-cyclodextrin. Chemical Physics Letters, 356, 423–430.Google Scholar
  4. Casadesús, R., Moreno, M., González-Lafont, A., Lluch, J. M., & Repasky, M. P. (2004). Testing electronic structure methods for describing intermolecular H···H interactions in supramolecular chemistry. Journal of Computational Chemistry, 25, 99–105.Google Scholar
  5. Casadesús, R., Moreno, M., & Lluch, J. M. (2006). Molecular modeling of the kinetic isotope effect on the intramolecular hydrogen atom transfer in triplet 6,9-dimethylbenzosuberone. Chemical Physics, 328, 410–420.Google Scholar
  6. Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K., & Frisch, M. J. (1999). A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Journal of Molecular Structure (THEOCHEM), 461–462, 1–21.Google Scholar
  7. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. P. P. (1985). Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909.Google Scholar
  8. Jensen, F. (1992). Introduction to computational chemistry. Chichester, UK: Wiley.Google Scholar
  9. Repasky, M. P., Chandrasekhar, J., & Jorgensen, W. L. (2002). PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods. Journal of Computational Chemistry, 23, 1601–1622.Google Scholar
  10. Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10, 209–220.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut de Teologia Fonamental, Facultat de FilosofiaUniversitat Ramon Llull & Seminari de Teologia i Ciències de BarcelonaCatalunyaSpain