Encyclopedia of Sciences and Religions

2013 Edition
| Editors: Anne L. C. Runehov, Lluis Oviedo

Magnetoencephalography (MEG)

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-8265-8_653

Related Terms

 Brain imaging;  Connectivity;  Inverse problem;  Magnetic;  Neural activity;  Oscillations;  Source localization

Magnetoencephalography (MEG) is a noninvasive brain imaging technique that records the small magnetic fields associated with electrical activity in the brain. The same electrical brain activity leads to fluctuations of electrical potentials that can be recorded at the scalp with the related measurement technique electroencephalography (EEG) Niedermeyer (2004).

MEG provides noninvasive recordings of brain activity with good spatial resolution and very high temporal resolution (about 1 ms) Hamalainen (1993). Measurements are challenged by the small amplitude of the neuromagnetic field that is typically below 10−12 T. The earth magnetic field for comparison is several orders of magnitude larger (about 10−4 T). Consequently, MEG recordings require highly sensitive detectors and efficient attenuation of environmental magnetic background activity. State-of-the-art...

This is a preview of subscription content, log in to check access

References

  1. Hari, R., & Forss, N. (1999). Magnetoencephalography in the study of human somatosensory cortical processing. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1387), 1145–1154. doi:10466142.Google Scholar
  2. Hari, R., & Salmelin, R. (1997). Human cortical oscillations: A neuromagnetic view through the skull. Trends in Neurosciences, 20(1), 44–49. doi:9004419.Google Scholar
  3. Hari, R., Salmelin, R., Mäkelä, J. P., Salenius, S., & Helle, M. (1997). Magnetoencephalographic cortical rhythms. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 26(1–3), 51–62. doi:9202994.Google Scholar
  4. Hamalainen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography – Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), 413. doi:10.1103/RevModPhys.65.413.Google Scholar
  5. Lu, Z.-L., & Kaufman, L. (2003). Magnetic source imaging of the human brain (1st ed.). Mahwah: Erlbaum.Google Scholar
  6. Niedermeyer, E., & Lopes da Silva, F. (2004). Electroencephalography: Basic principles, clinical applications, and related fields (5th ed.). Philadelphia: Lippincott Williams & Wilkins. 1.Google Scholar
  7. Papanicolaou, A. (2008). Clinical applications of magnetoencephalography. Cambridge: Cambridge University Press.Google Scholar
  8. Preissl, H. (2005). Magnetoencephalography (1st ed., Vol. 68). San Diego: Academic.Google Scholar
  9. Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6(4), 285–296. doi:nrn1650.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Psychology, Centre for Cognitive NeuroimagingUniversity of GlasgowGlasgowUK