Algebra in Islamic Mathematics

  • Mat Rofa Bin Ismail
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4425-0_9547

The word algebra is derived from the Arabic al‐jabr, a term used by its founder, Muḥammad ibn Mūsā al‐Khwārizmī, in the title of his book written in the ninth century, al‐Jabr wa˒l‐muqābalah (The Science of Equations and Balancing). Algebra is also known as “the science of solving the unknowns in equations.”

The simplest equation with one unknown is of the form ax = b, with a and b as constants x here is called al‐jadhr of the equation. Al‐Khwārizmī enumerated six standard second‐degree equations in his al‐Jabr wa'l‐muqābalah:
This is a preview of subscription content, log in to check access

References

  1. ˓Abd al‐Raḥman, ḥikmat Najīb. Dirāsāt fī tārīkh al‐˓ulūm ˓inda al‐˓Arab. al-Mawṣil: Wizārat al‐Ta˓līm al‐˓Ālī wa‐al Baḥth al ˓Ilmī, Jāmi˓at al‐Mawṣil, 1977. 140.Google Scholar
  2. Al‐Daffa, A. A. and J. Stroyls. Studies in the Exact Sciences in Medieval Islam. New York: John Wiley & Sons, 1984a.Google Scholar
  3. ‐‐‐. Some Myths About Logarithms in Near Eastern Mathematics. Studies in the Exact Sciences in Medieval Islam. New York: John Wiley & Sons, 1984b. 27.Google Scholar
  4. Anbouba, A. L'Algébra arabe aux IX et X siècles, Aperçu general. Journal of History of Arabic Science 2 (1978): 66–100.Google Scholar
  5. Berggren, J. L. Episodes in the Mathematics of Medieval Islam. New York: Springer‐Verlag, 1986.Google Scholar
  6. Fraenkel, Abraham Adolf. Problems and Methods in Modern Mathematics. Scripta Mathematica 9 (1943): 162–8.Google Scholar
  7. Hughes, Barnabas. Arabic Algebra: Victim of Religious and Intellectual Animus. Mathematische Probleme im Mittelalter: Der lateinische und arabische Sprachbereich. Ed. Menso Folkerts. Wiesbaden: Harrassowitz, 1996. 197–220.Google Scholar
  8. Kasir, Daoud S. The Algebra of ˓Umar al‐Khayyām. Ph.D. Thesis, Columbia University, 1931.Google Scholar
  9. McCarthy, Paul. Odd Perfect Numbers. Historia Mathematica 23 (1957): 43–7.Google Scholar
  10. Naini, Alireza Dja'fari. A New Type of Numbers in a 17th Century Manuscript: al‐Yazdi on Numbers of Equal Weight. Journal of History of Arabic Science 7 (1983): 125–39.Google Scholar
  11. Nasr, Seyyed H. Science and Civilization in Islam. Cambridge, Massachusetts: Harvard University Press, 1968.Google Scholar
  12. Picutti, E. Pour l'histoire des sept premiers nombres parfaits. Historia Mathematica 16 (1989): 123–36.Google Scholar
  13. Rashed, Roshdi. Tārīkh al‐jabr wa ikhtirā˒al‐kusūr al‐˓usyuriyyah (The History of Algebra and the Discovery of Decimal Fractions). Proceedings of the First International Symposium for the History of Arabic Science. Aleppo: Institute for the History of Arabic Science, 1977. 169–86.Google Scholar
  14. ‐‐‐. Oeuvres mathématiques. Paris: Les belles lettres, 1985.Google Scholar
  15. Saidan, A. S. Tārikh ˓ilm al‐ḥisāb al‐˓Arabi. Amman: al‐Lajnah al‐Urdunīyah lil‐Ta˓rīb wa‐al Nashr wa‐al Tarjamah, 1973–1984.Google Scholar
  16. ‐‐‐. Number Theory and Series Summation in Two Arabic Texts. Proceedings of the First Symposium for the History of Arabic Science. Vol. 2. Aleppo: University of Aleppo, 1977. 152.Google Scholar
  17. Shawki, J. and A. A. al‐Daffa. Al‐˓Ulūm al‐riādiyyāt fi'l‐ḥaḍārah al‐Islāmiyyah. New York: John Wiley & Sons, 1985–1986.Google Scholar
  18. Yadegari, Muhammad. The Use of Mathematical Induction by Abū Kāmil Shujā˓ ibn Aslam (850–930). Isis 69 (1978): 259–62.Google Scholar
  19. Youschkevitch, A. A. P. Geschichte der mathematik im mittelalter. Leipzig: Teubner, 1964.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2008

Authors and Affiliations

  • Mat Rofa Bin Ismail

There are no affiliations available