Al‐Qūhī (or Al‐Kūhī)

  • Yvonne Dold‐Samplonius
Reference work entry

Abū Sahl Wayjan ibn Rustam al‐Qūhī (or al‐Kūhī) probably originated from the village of Quh in the Iranian province of Tabaristan. He worked in Baghdad under the Buwayhid Caliphs ˓Aḍud al‐Dawla and his son and successor Sharaf al‐Dawla. In 969/970 al‐Qūhī assisted at the observations of the solstices in Shiraz. These observations, ordered by ˓Aḍud al‐Dawla, were directed by Abū'l‐ḥusayn ˓Abd al‐Raḥmān ibn ˓Umar al‐Ṣūfī. In 988 al‐Qūhī supervised astronomical observations in the garden of the palace of Sharaf al‐Dawla in Baghdad in the company of several magistrates and respected scientists.

Some of al‐Qūhī's contemporaries considered him to be the best geometer of his time; al‐Khayyāmī held him in high esteem. In the geometrical writings known to us he mainly solved problems that would have led to equations of higher than the second degree. A note by al‐Qūhī is added to Naṣīr al‐Dīn al‐Ṭūsī's redaction of Archimedes' Sphere and Cylinderin the Leiden manuscript, on how to construct a...

This is a preview of subscription content, log in to check access.


  1. Abgrall, Philippe. Les Circles Tangents d'al‐Qūhī. Arabic Sciences and Philosophy 5 (1995): 263–95.Google Scholar
  2. Anbouba, Adel. Construction de l'Heptagone Régulier par les Arabes au 4e Siècle H. Journal of the History of Arabic Science 2 (1978): 264–9.Google Scholar
  3. Berggren, J. Lennart. The Barycentric Theorems of Qūhī Sahl al‐Qūhī. Second International Symposium on the History of Arabic Science, Aleppo, 1979.Google Scholar
  4. ‐‐‐. The Correspondence of Abū Sahl al‐Qūhī and Abū Isḥaq al‐ṣābī: A Translation with Commentaries. Journal of the History of Arabic Science 7 (1983): 39–124.Google Scholar
  5. ‐‐‐. Medieval Islamic Methods for Drawing Azimuth Circles on the Astrolabe. Centaurus 34 (1991): 309–44.Google Scholar
  6. ‐‐‐. Abū Sahl al‐Kūhi's Treatise on the Construction of the Astrolabe with Proof: Text, Translation and Commentary. Physis (NS) 31 (1994): 141–252.Google Scholar
  7. DeYoung, Gregg. Abū Sahl's Additions to Book II of Euclid's Elements. Zeitschrift für Geschichte der Arabisch‐Islamischen Wissenschaften 7 (1991–1992): 73–135.Google Scholar
  8. Dold‐Samplonius, Yvonne. al‐Qūhī. Dictionary of Scientific Biography. Vol. XI. Ed. Charles C. Gillispie. New York: Charles Scribner's Sons, 1970. 239–41.Google Scholar
  9. Hogendijk, Jan P. Rearranging the Arabic Mathematical and Astronomical Manuscript Bankipore 2468. Journal of the History of Arabic Science 6 (1982): 133–59.Google Scholar
  10. ‐‐‐. Al‐Kūhī's Construction of an Equilateral Pentagon in a Given Square. Zeitschrift für Geschichte der Arabisch‐Islamischen Wissenschaften 1 (1984a): 101–44.Google Scholar
  11. ‐‐‐. Greek and Arabic Constructions of the Regular Heptagon. Archive for History of the Exact Sciences 30 (1984b): 197–330.Google Scholar
  12. ‐‐‐. Ibn al‐Haytham's Completion of the Conics. Berlin: Springer Verlag, 1984c.Google Scholar
  13. Knorr, Wilbur. Textual Studies in Ancient and Medieval Geometry. Boston: Birkhäuser, 1989.Google Scholar
  14. Rashed, Roshdi. Géométrie et dioptrique au Xe Siècle: Ibn Sahl, al‐Qūhī et Ibn al‐Haytham. Paris: Les Belles Lettres, 1993.Google Scholar
  15. ‐‐‐. Al‐Qūhī: From Meteorology to Astronomy. Arabic Sciences and Philosophy 11 (2001): 157–204.Google Scholar
  16. Sesiano, Jacques. Note sur trois théorèmes de Mécanique d'al‐Qūhī et leur conséquence. Centaurus 22 (1979): 281–97.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2008

Authors and Affiliations

  • Yvonne Dold‐Samplonius

There are no affiliations available