Skip to main content

Environmental Magnetism, Paleomagnetic Applications

  • Reference work entry
Encyclopedia of Geomagnetism and Paleomagnetism
  • 177 Accesses

Introduction

Environmental magnetism involves magnetic measurements of environmental materials, including sediments, soils, rocks, mineral dust, anthropogenic pollutants, and biological materials. The magnetic properties of these materials can be highly sensitive to a broad range of environmental processes, which makes mineral magnetic studies widely useful in the environmental sciences. More detailed treatments of the breadth of environmental magnetic research applications, and definitions of magnetic parameters and their interpretation, can be found in recent review articles and books (e.g., Verosub and Roberts, 1995; Maher and Thompson 1999; Evans and Heller 2003; see also Environmental magnetism). Most environmental magnetic studies aptly focus on environmental interpretations. Nevertheless, environmental magnetism, whether explicitly stated as such or not, routinely plays an important role in paleomagnetic studies, including tectonic, geochronological, and geomagnetic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Channell, J.E.T., Hodell, D.A., McManus, J., and Lehman, B., 1998. Orbital modulation of the Earth's magnetic field intensity. Nature, 394: 464–468.

    Google Scholar 

  • Dinarès‐Turell, J., Sagnotti, L., and Roberts, A.P., 2002. Relative geomagnetic paleointensity from the Jaramillo Subchron to the Matuyama/Brunhes boundary as recorded in a Mediterranean piston core. Earth and Planetary Science Letters, 194: 327–341.

    Google Scholar 

  • Evans, M.E., and Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. New York: Academic Press, 299 pp.

    Google Scholar 

  • Florindo, F., and Sagnotti, L., 1995. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section. Geophysical Journal International, 123: 340–354.

    Google Scholar 

  • Guyodo, Y., Richter, C., and Valet, J.‐P., 1999. Paleointensity record from Pleistocene sediments (1.4–0 Ma) off the California Margin. Journal of Geophysical Research, 104: 22,953–22,964.

    Google Scholar 

  • Guyodo, Y., Gaillot, P., and Channell, J.E.T., 2000. Wavelet analysis of relative geomagnetic paleointensity at ODP Site 983. Earth and Planetary Science Letters, 184: 109–123.

    Google Scholar 

  • Hagelberg, T.K., Pisias, N.G., Shackleton, N.J., Mix, A.C., and Harris, S., 1992. Refinement of a high‐resolution, continuous sedimentary section for studying equatorial Pacific Ocean paleoceanography, Leg 138. Proceedings of the Ocean Drilling Program—Scientific Results, 138: 31–46.

    Google Scholar 

  • Hilgen, F.J., 1991. Extension of the astronomically calibrated (polarity) timescale to the Miocene/Pliocene boundary. Earth and Planetary Science Letters, 107: 349–368.

    Google Scholar 

  • Horng, C.‐S., and Roberts, A.P., 2006. Authigenic or detrital origin of pyrrhotite in sediments?: Reso paleomagnetic conundrum, Earth and Planetary Science Letters, 241: 750–762.

    Google Scholar 

  • Horng, C.S., Torii, M., Shea, K.‐S., and Kao, S.‐J., 1998. Inconsistent magnetic polarities between greigite‐ and pyrrhotite/magnetite‐bearing marine sediments from the Tsailiao‐chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164: 467–481.

    Google Scholar 

  • Horng, C.‐S., Roberts, A.P., and Liang, W.T., 2003. A 2.14‐million‐year astronomically‐tuned record of relative geomagnetic paleointensity from the western Philippine Sea. Journal of Geophysical Research, 108: 2059, doi:10.1029/2001JB001698.

    Google Scholar 

  • Jackson, M., Rochette, P., Fillion, G., Banerjee, S., and Marvin, J., 1993. Rock magnetism of remagnetized Paleozoic carbonates: low‐temperature behavior and susceptibility characteristics. Journal of Geophysical Research, 98: 6217–6225.

    Google Scholar 

  • Kent, D.V., 1982. Apparent correlation of palaeomagnetic intensity and climate records in deep‐sea sediments. Nature, 299: 538–539.

    Google Scholar 

  • Langereis, C.G., and Hilgen, F.J., 1991. The Rosello composite—a Mediterranean and global reference section for the early to early Late Pliocene. Earth and Planetary Science Letters, 104: 211–225.

    Google Scholar 

  • Larrasoaña, J.C., Roberts, A.P., Rohling, E.J., Winklhofer, M., and Wehausen, R., 2003a. Three million years of monsoon variability over the northern Sahara. Climate Dynamics, 21: 689–698.

    Google Scholar 

  • Larrasoaña, J.C., Roberts, A.P., Stoner, J.S., Richter, C., and Wehausen, R., 2003b. A new proxy for bottom‐water ventilation based on diagenetically controlled magnetic properties of eastern Mediterranean sapropel‐bearing sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 190: 221–242.

    Google Scholar 

  • Laskar, J., Joutel, F., and Boudin, F., 1993. Orbital, precessional, and insolation quantities for the Earth from −20 Myr to +10 Myr. Astronomy and Astrophysics, 270: 522–533.

    Google Scholar 

  • Lennie, A.R., England, K.E.R., and Vaughan, D.J., 1995. Transformation of synthetic mackinawite to hexagonal pyrrhotite: a kinetic study. American Mineralogist, 80: 960–967.

    Google Scholar 

  • Maher, B.A., and Thompson, R. (eds.), 1999. Quaternary Climates, Environments and Magnetism. Cambridge: Cambridge University Press, 390 pp.

    Google Scholar 

  • Roberts, A.P., and Turner, G.M., 1993. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters, 115: 257–273.

    Google Scholar 

  • Roberts, A.P., Lehman, B., Weeks, R.J., Verosub, K.L., and Laj, C., 1997. Relative paleointensity of the geomagnetic field from 0–200 kyr, ODP Sites 883 and 884, North Pacific Ocean. Earth and Planetary Science Letters, 152: 11–23.

    Google Scholar 

  • Roberts, A.P., Winklhofer, M., Liang, W.‐T., and Horng, C.‐S., 2003. Testing the hypothesis of orbital (eccentricity) influence on Earth's magnetic field. Earth and Planetary Science Letters, 216: 187–192.

    Google Scholar 

  • Rochester, M.G., Jacobs, J.A., Smylie, D.E., and Chong, K.F., 1975. Can precession power the geomagnetic dynamo? Geophysical Journal of the Royal Astronomical Society, 43: 661–678.

    Google Scholar 

  • Rowan, C.J., and Roberts, A.P., 2005. Tectonic and geochronological implications of variably timed remagnetizations carried by authigenic greigite in fine‐grained sediments from New Zealand. Geology, 33: 553–556.

    Google Scholar 

  • Sagnotti, L., Roberts, A.P., Weaver, R., Verosub, K.L., Florindo, F., Pike, C.R., Clayton, T., and Wilson, G.S., 2005. Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophysical Journal International, 160: 89–100.

    Google Scholar 

  • Schoonen, M.A.A., and Barnes, H.L., 1991. Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes. Geochimica Cosmochimica Acta, 55: 3491–3504.

    Google Scholar 

  • Shackleton, N.J., Crowhurst, S.J., Weedon, G.P., and Laskar, J., 1999. Astronomical calibration of Oligocene‐Miocene time. Philosophical Transactions of the Royal Society, London, Series A, 357: 1907–1929.

    Google Scholar 

  • Tauxe, L., and Shackleton, N.J., 1994. Relative palaeointensity records from the Ontong‐Java Plateau. Geophysical Journal International, 117: 769–782.

    Google Scholar 

  • Tric, E., Laj, C., Jéhanno, C., Valet, J.‐P., Kissel, C., Mazaud, A., and Iaccarino, S., 1991. High‐resolution record of the upper Olduvai transition from Po Valley (Italy) sediments: support for dipolar transition geometry? Physics of the Earth and Planetary Interiors, 65: 319–336.

    Google Scholar 

  • Turner, G.M., and Thompson, R., 1979. Behaviour of the Earth's magnetic field as recorded in sediments of Loch Lomond. Earth and Planetary Science Letters, 42: 412–426.

    Google Scholar 

  • Verosub, K.L., and Roberts, A.P., 1995. Environmental magnetism: past, present, and future. Journal of Geophysical Research, 100: 2175–2192.

    Google Scholar 

  • Weaver, R., Roberts, A.P., and Barker, A.J., 2002. A late diagenetic (synfolding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide‐bearing sediments. Earth and Planetary Science Letters, 200: 371–386.

    Google Scholar 

  • Yamazaki, T., and Oda, H., 2002. Orbital influence on Earth's magnetic field: 100,000‐year periodicity in inclination. Science, 295: 2435–2438.

    Google Scholar 

  • Xu, W., Van der Voo, R., and Peacor, D., 1998. Electron microscopic and rock magnetic study of remagnetized Leadville carbonates, central Colorado. Tectonophysics, 296: 333–362.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Roberts, A.P. (2007). Environmental Magnetism, Paleomagnetic Applications. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_96

Download citation

Publish with us

Policies and ethics