Skip to main content
  • 417 Accesses

Definition of the model

Human‐made dynamos are complex, multiconnected, asymmetric devices, but those operating in Nature have to function in geometrically‐simple (usually almost spherical) bodies of electrically conducting fluid, such as Earth's core. During the early development of dynamo theory, it seemed possible that no motion within such a simple “homogeneous” system could maintain a magnetic field, a feeling reenforced by some antidynamo theorems (see Antidynamo and bounding theorems and Cowling's theorem ). Whether homogeneous dynamos exist or not is an electrodynamic question, i.e., one that can be addressed without asking how the velocity V of the conductor is maintained and how a magnetic field B would affect it. It is necessary only to find a V that can sustain a nonzero B, and these are then called “kinematic dynamos”, to distinguish them from “MHD dynamos” which satisfy the full equations of magnetohydrodynamics. (See Dynamos, kinematic and Magnetohydrodynamics...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Childress, S., and Gilbert, A.D., 1995. Stretch, Twist, Fold: The Fast Dynamo. Berlin: Springer.

    Google Scholar 

  • Dudley, M.L., and James, R.W., 1989. Time‐dependent kinematic dynamos with stationary flows. Proceedings of the Royal Sociery of London, Series A, 425: 407–429.

    Google Scholar 

  • Gailitis, A., 1990. In Moffatt, H.K., and Tsinober, A. (eds.), Topological Fluid Mechanics. Cambridge: University Press, pp. 147–156.

    Google Scholar 

  • Gailitis, A., 1996, Design of a liquid sodium MHD dynamo experiment. Magnit. Gidro., (1), 68–74 (Eng. Trans. Magnetohydrodynamics, 32: 158–162.)

    Google Scholar 

  • Gailitis, A.K., Freiberg, Ya. G., 1976. Theory of a helical MHD dynamo. Magnit. Gidro., (2), 3–6 (Eng. Trans. Magnetohydrodynamics, 12: 127–130.)

    Google Scholar 

  • Gailitis, A.K., Freiberg, Ya. G., 1980. Nonuniform model of a helical dynamo. Magnit. Gidro., 15–19 (Eng. Trans. Magnetohydrodynamics, (1), 16: 11–15.)

    Google Scholar 

  • Gailitis, A.K., Karasev, B.G., Kirillov, I.R., Lielausis, O.A., Luzhanskii, S.M., Ogorodnikov, A.P., Preslitskii, G.V., 1987. Experiment with a liquid‐metal model of an MHD dynamo, Magnit. Gidro., (4), 3–8 (Eng. Trans. Magnetohydrodynamics, 23: 349–352.)

    Google Scholar 

  • Gailitis, A., Lielausis, O., Karasev, B.G., Kirillov, I.R., Ogorodnikov, A.P., 1989. In Lielpeteris, J., and Moreau, R. (eds.), Liquid Metal Magnetohydrodynamics. Dordrecht: Kluwer, pp. 413–419.

    Google Scholar 

  • Gailitis, A.K., Lielausis, O.A., Dementev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H., Will, G., 2000. Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Physics Review Letters, 84: 4365–4368.

    Article  Google Scholar 

  • Gailitis, A.K., Lielausis, O.A., Platacis, E., Dementev, S., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Will, G., 2001. Magnetic field saturation in the Riga dynamo experiment, Physics Review Letters, 86: 3024–3027.

    Article  Google Scholar 

  • Gailitis, A.K., Lielausis, O.A., and Platacis, E., 2002. Colloquium: Laboratory experiments on hydromagnetic dynamos, Reviews of Modern Physics, 74: 973–990.

    Article  Google Scholar 

  • Gilbert, A.D., 1988. Fast dynamo action in the Ponomarenko dynamo. Geophysical and Astrophysical Fluid Dynamics, 44: 214–258.

    Article  Google Scholar 

  • Gilbert, A.D., 2003. In Friedlander, S., and Sevre, D. (eds.), Handbook of Mathematical Fluid Dynamics, 2: 355–441.

    Google Scholar 

  • Lortz, D., 1968. Exact solutions of the hydromagnetic dynamo problem. Plasma Physics, 10: 967–972.

    Article  Google Scholar 

  • Parker, E.N., 1955. Hydromagnetic dynamo models. Astrophysical Journal, 122: 293–314.

    Article  Google Scholar 

  • Ponomarenko, Yu. B., 1973. On the theory of hydromagnetic dynamo. Zh. Prik. Mech. Tech. Fiz. SSSR (6): 47–51. (Eng. Trans. Journal of Applied Mechanics and Technical Physics, 14: 775–778.)

    Google Scholar 

  • Roberts, P.H., 1987. In Nicolis, C., and Nicolis, G. (eds.), Irreversible Phenomena and Dynamical System Analysis in Geosciences. Dordrecht: Reidel, pp. 73–133.

    Google Scholar 

  • Ruzmaikin, A.A., Sokoloff, D.D., Shukurov, A.M., 1988. A hydromagnetic screw dynamo. Journal of Fluid Mechanics, 197: 39–56.

    Article  Google Scholar 

  • Solovyev, A.A., 1985a. Magnetic field generation by the axially‐symmetric flow of conducting fluid. Physics of the Solid Earth, 4: 101–103.

    Google Scholar 

  • Solovyev, A.A., 1985b. Couette spiral flows of conducting fluids consistent with magnetic field generation. Physics of the Solid Earth, 12: 40–47.

    Google Scholar 

  • Solovyev, A.A., 1987. Excitation of a magnetic field by the movement of a conductive liquid in the presence of large values of the magnetic Reynolds number. Physics of the Solid Earth, 23: 420–423.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Roberts, P.H. (2007). Dynamo, Ponomarenko. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_77

Download citation

Publish with us

Policies and ethics