Skip to main content

Introduction

Turbulence is a ubiquitous feature of geophysical flows. The challenge in dealing with turbulence is the broad range of spatial and temporal scales. For the Earth's core, the largest scales of motion are set by the geometry of the core, whereas the smallest dissipative scales are determined by the low viscosity and chemical diffusivity of liquid iron alloys (Dobson, 2000; Vocadlo et al., 2000). The range of time scales is even greater (Hollerbach, 2003). Buoyancy‐driven inertial oscillations have diurnal periods (Zhang, 1994), whereas changes in the frequency of magnetic reversals occur on time scales of 108 years (McFadden and Merrill, 2000). Such a vast range of spatial and temporal scales prohibits direct simulations of the Earth's geodynamo (q.v.). Instead, modelers must confine their attention to the largest scales and deal with the problem of limited spatial resolution by parameterizing processes that operate at subgrid scales. Spatially constant eddy diffusivities...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bardina, J., Ferziger, J.H., and Reynolds, W.C., 1980. Improved subgrid scale models for large‐eddy simulations. American Institute of Aeuronautics and Acoustics Journal, 34: 1111–1119.

    Google Scholar 

  • Braginsky, S.I., and Meytlis, V.P., 1990. Local turbulence in the Earth's core. Geophysical and Astrophysical Fluid Dynamics, 55: 71–87.

    Google Scholar 

  • Buffett, B.A., 2003. A comparison of subgrid‐scale models for large‐eddy simulations of convection in the Earth's core. Geophysics Journal International, 153: 753–765.

    Google Scholar 

  • Buffett, B.A., and Bloxham, J., 2002. Energetics of numerical geodynamo models. Geophysical Journal International, 149: 211–221.

    Google Scholar 

  • Chan, K.H., Zhang, K., Zou, J., and Schubert, G., 2001. A nonlinear 3‐D spherical dynamo using a finite element method. Physical Earth Planet Interiors, 128: 35–50.

    Google Scholar 

  • Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., and Wynne, S., 1999. A connection between the Camassa‐Holm equations and turbulent flow in pipes and channels. Physics of Fluids, 11: 2343–2353.

    Google Scholar 

  • Christensen, U., Olson, P., and Glatzmaier, G.A., 1998. A dynamo interpretation of geomagnetic field structures. Geophysical Research Letters, 25: 1565–1568.

    Google Scholar 

  • Christensen, U., Olson, P., and Glatzmaier, G.A., 1999. Numerical modeling of the geodynamo: A systematic parameter study. Geophysics Journal International, 138: 393–409.

    Google Scholar 

  • Clune, T.C., Elliott, J.R., Miesh, M.S., Toomre, J., and Glatzmaier, G.A., 1999. Computational aspects of a code to study rotating turbulent convection in spherical shells. Parallel Computing, 25: 361–380.

    Google Scholar 

  • Dobson, D.P., 2000. Fe‐57 and Co tracer diffusion in liquid Fe‐FeS at 2 and 5 GPa. Physics of the Earth and Planetary Interiors, 120: 137–144.

    Google Scholar 

  • Foias, C., Holm, D.D., and Titi, E.S., 2001. The Navier‐Stokes‐alpha model of fluid turbulence. Physica D, 152: 505–519.

    Google Scholar 

  • Germano, M., 1986. A proposal for a redefinition of the turbulent stresses in the filtered Navier‐Stokes equations. Physics of Fluids, 29: 2323–2324.

    Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., and Cabot, W.H., 1991. A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A, 3: 1760–1765.

    Google Scholar 

  • Glatzmaier, G.A., and Roberts, P.H., 1995. A three‐dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Physics of Earth and Planetary Interiors, 91: 63–75.

    Google Scholar 

  • Glatzmaier, G.A., and Roberts, P.H., 1996. An anelastic evolutionary geodynamo simulation driven by compositional and thermal buoyancy. Physica D, 97: 81–94.

    Google Scholar 

  • Grote, E., Busse, F.H., and Tilgner, A., 1999. Convection‐driven quadrupolar dynamos in rotating spherical shells. Physical Review E, 60: R5025–R5028.

    Google Scholar 

  • Grote, E., Busse, F.H., and Tilgner, A., 2000. Effects of hyperdiffusivities on dynamo simulations. Geophysical Research Letters, 27: 2001–2004.

    Google Scholar 

  • Hollerbach, R., 2003. The range of timescales on which the geodynamo operates. In Dehant, V., et al., (ed.), Earth's Core: Dynamics, Structure, Rotation. Geodynamics Monograph, American Geophysical Union, Vol. 31, 181–192.

    Google Scholar 

  • Holm, D.D., 2002. Lagrangian averages, averaged Lagrangians and the mean effect of fluctuations in fluid dynamics. Chaos, 12: 518–530.

    Google Scholar 

  • Kageyama, A., and Sato, T., 1995. The Complexity Simulation Group, Computer simulation of a magnetohydrodynamic dynamo. Physics of Plasmas, 2: 1421–1431.

    Google Scholar 

  • Kageyama, A., and Sato, T., 1997. Generation mechanism of a dipole field by a magnetohydrodynamic dynamo. Physical Review Letters E, 55: 4617–4626.

    Google Scholar 

  • Kageyama, A., and Sato, T., 2004. Yin‐Yang grid: An overset grid in spherical geometry. Geochemistry, Geophysics, and Geosystems, 5, Q09005.

    Google Scholar 

  • Katayama, J.S., Matsushima, M., and Honkura, Y., 1999. Some characteristics of magnetic field behavior in a model of MHD dynamo thermally driven in a rotating spherical shell. Physics of Earth and Planetary Interiors, 111: 141–159.

    Google Scholar 

  • Kono, M., Sakuraba, A., and Ishida, M., 2000. Dynamo simulation and paleosecular variation models. Philosophical Transactions of the Royal Society of London, A358: 1123–1139.

    Google Scholar 

  • Kuang, W., and Bloxham, J., 1997. An Earth‐like numerical dynamo model. Nature, 389: 371–374.

    Google Scholar 

  • Landau, L.D., and Lifshitz, E.M., 1981. Physical Kinetics, Course of Theoretical Physics, Vol. 10, Oxford: Pergamon Press.

    Google Scholar 

  • Leonard, A., 1974. Energy cascade in large‐eddy simulations of turbulent flow. Advances In Geophysics, 18: 237–248.

    Google Scholar 

  • Lesieur, M., and Metais, O., 1996. New trends in large‐eddy simulations of turbulence. Annual Review of Fluid Mechanics, 28: 45–82.

    Google Scholar 

  • Matsui, H., and Okuda, H., 2004. Development of a simulation code for MHD dynamo processes using the GEOFEM platform. International Journal of Computational Fluid Dynamics, 18: 323–332.

    Google Scholar 

  • Matsui, H., and Buffett, B.A., 2005. Subgrid‐scale modeling of convection‐driven dynamos in a rotating plane layer. Physics of Earth and Planetary Interiors, 153: 108–123.

    Google Scholar 

  • Matsushima, M., Nakajima, T., and Roberts, P.H., 1999. The anisotropy of local turbulence in the Earth's core. Earth, Planets and Space, 51: 277–286.

    Google Scholar 

  • Matsushima, M., 2004. Scale similarity of MHD turbulence in the Earth's core. Earth, Planets, Space, 56: 599–605.

    Google Scholar 

  • McFadden, P.L., and Merrill, R.T., 2000. Evolution of the geomagnetic reversal rate since 160 Ma: Is the process continuous? Journal of Geophysical Research, 105: 28455–28460.

    Google Scholar 

  • Meneveau, C., and Katz, J., 2000. Scale invariance and turbulence models for large‐eddy simulation. Annual Review of Fluid Mechanics, 32: 1–32.

    Google Scholar 

  • Moffatt, H.K., 1978. Magnetic Field Generation in Electrically Conducting Fluids, Cambridge, UK: Cambridge University Press, 343 pp.

    Google Scholar 

  • Montgomery, D.C., and Pouquet, A., 2002. An alternative interpretation for the Holm alpha model. Physics of Fluids, 14: 3365–3566.

    Google Scholar 

  • Olson, P., Christensen, U., and Glatzmaier, G.A., 1999. Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration. Journal of Geophysical Research, 104: 10383–10404.

    Google Scholar 

  • Phillips, C.G., and Ivers, D.J., 2000. Spherical anisotropic diffusion models for the Earth's core. Physics of Earth and Planetary Interiors, 117: 209–223.

    Google Scholar 

  • Phillips, C.G., and Ivers, D.J., 2001. Spectral interactions of rapidly rotating anisotropic turbulent viscous and thermal diffusion in the Earth's core. Physics of Earth and Planetary Interiors, 128: 93–107.

    Google Scholar 

  • Phillips, C.G., and Ivers, D.J., 2003. Strong‐field anisotropic diffusion models for the Earth's core. Physics of Earth and Planetary Interiors, 140: 13–28.

    Google Scholar 

  • Piomelli, U., and Zang, T.A., 1991. Large‐eddy simulation of transitional channel flow. Computer Physics Communications, 65: 224–230.

    Google Scholar 

  • Roberts, P.H., and Glatzmaier, G.A., 2000a. Geodynamo theory and simulations. Reviews of Modern Physics, 72: 1081–1123.

    Google Scholar 

  • Shimizu, H., and Loper, D.E., 1997. Time and length scales of buoyancy‐driven flow structures in a rotating hydromagnetic fluid. Physics of Earth and Planetary Interiors, 104: 307–329.

    Google Scholar 

  • St. Pierre, M.G., 1996. On the local nature of turbulence in Earth's outer core. Geophysical and Astrophysical Fluid Dynamics, 83: 293–306.

    Google Scholar 

  • Tennekes H., and Lumley, J.L., 1972. A First Course in Turbulence, Cambridge, MA: The MIT Press.

    Google Scholar 

  • Vocadlo, L., Alfe, D., Price, G.D., and Gillan, M.J., 2000. First‐principle calculations of the diffusivity and viscosity of liquid Fe‐FeS at experimentally accessible conditions. Physics of Earth and Planet. Interiors, 120: 145–152.

    Google Scholar 

  • Zhang, K.K., 1994. On the coupling between Poincare equation and the heat equation. Journal of Fluid Mechanics, 268: 211–229.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Buffett, B., Matsui, H. (2007). Core Turbulence. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_41

Download citation

Publish with us

Policies and ethics