Skip to main content

Vine‐Matthews‐Morley Hypothesis

  • Reference work entry
Encyclopedia of Geomagnetism and Paleomagnetism

Definition

The Vine‐Matthews‐Morley (VMM) hypothesis states that, when ocean crust forms at a midocean ridge (i.e., a spreading center), the cooling crust becomes magnetized in the direction of Earth's prevailing magnetic field as it cools below the Curie temperature of the magnetic minerals (Morley and Larochelle, 1964; Vine and Matthews, 1963). Typically this Curie temperature is between 150 and 300 °C for titanomagnetite, the primary magnetic mineral in the upper oceanic crust, and ∼580 °C for pure magnetite found in the lower ocean crust. The ocean crust moves away from the spreading center through the process of “seafloor spreading” and in this way the magnetic signal recorded in the newly formed crust is preserved (Figure V5). A good analogy is that of a tape recorder where the ocean crust is the magnetic tape and Earth's magnetic field is the signal, which is recorded onto the moving tape. In this way, changes in Earth's magnetic field polarity through time are preserved in the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Acton, G.D., and Gordon, R.G., 1991. A 65 Ma paleomagnetic pole for the Pacific Plate from the skewness of magnetic anomalies 27r‐31. Geophysical Journal International, 106: 407–420.

    Article  Google Scholar 

  • Allerton, S., and Tivey, M.A., 2001. Magnetic polarity structure of lower oceanic crust. Geophysical Research Letters, 28: 423–426.

    Article  Google Scholar 

  • Atwater, T.M., and Mudie, J., 1973. Detailed near‐bottom geophysical study of the Gorda Rise. Journal of Geophysical Research, 78: 8665–8686.

    Google Scholar 

  • Bowers, N.E., Cande, S.C., Gee, J.S., Hildebrand, J.A., and Parker, R.L., 2001. Fluctuations of the paleomagnetic field during chron C5 as recorded in near‐bottom marine magnetic anomaly data. Journal of Geophysical Research, 106: 26379–26396.

    Article  Google Scholar 

  • Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research, 100: 6093–6095.

    Article  Google Scholar 

  • Channell, J.E.T., Erba, E., Nakanishi, M., and Tamaki, K., 1995. Late Jurassic‐Early Cretaceous time scales and oceanic magnetic anomaly block models. In Berggren, W.A., Kent, D.V., Aubry, M.‐P., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation, Volume 54: Special Publication. Tulsa, OK: SEPM (Society for Sedimentary Geology), pp. 51–63.

    Google Scholar 

  • Courtillot, V., 1980. Plaques, microplaques et dechirures lithospheriques: une hierarchie de structures tectoniques de l'echelle du globe a celle du terrain. Bulletin de la Societe Geologique de France, 12: 981–984.

    Google Scholar 

  • Cox, A., Doell, R.R., and Dalrymple, G.B., 1963. Geomagnetic polarity epochs and Pleistocene geochronology. Nature, 198: 1049–1051.

    Article  Google Scholar 

  • DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1990. Current plate motions. Geophysical Journal International, 101: 425–478.

    Article  Google Scholar 

  • Dietz, R.S., 1961. Continent and ocean basin evolution by spreading of the seafloor. Nature, 190: 854–857.

    Article  Google Scholar 

  • Gee, J.S., Cande, S.C., Hildebrand, J.A., Donnelly, K., and Parker, R.L., 2000. Geomagnetic intensity variations over the past 780 kyr obtained from near‐seafloor magnetic anomalies. Nature, 408: 827–832.

    Article  Google Scholar 

  • Girdler, R.W., and Peter, G., 1960. An example of the importance of natural remanent magnetization in the interpretation of magnetic anomalies. Geophysical Prospecting, 8: 474–483.

    Article  Google Scholar 

  • Glen, W., 1982. The Road to Jaramillo. Critical Years of the Revolution in Earth Science. Stanford, CA: Stanford University Press, 459 pp.

    Google Scholar 

  • Guyodo, Y., and Valet, J.‐P., 1999. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature, 399: 249–252.

    Article  Google Scholar 

  • Harrison, C.G.A., 1981. Magnetism of the oceanic crust. In Emiliani, C. (ed.), The Sea, Volume 7. New York: Wiley, pp. 219–237.

    Google Scholar 

  • Heirtzler, J.R., Dickson, G.O., Herron, E.M., Pittman, W.C., III, and Le Pichon, X., 1968. Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. Journal of Geophysical Research, 73: 2119–2136.

    Google Scholar 

  • Hess, H.H., 1962. History of ocean basins. In Engel, A.E.J., James, H.L., and Leonard, B.F. (eds.) Petrologic Studies: The Buddington Volume. Boulder, CO: Geological Society of America, pp. 599–620.

    Google Scholar 

  • Hey, R., 1977. A new class of “pseudofaults” and their bearing on plate tectonics: a propagating rift model. Earth and Planetary Science Letters, 37: 321–325.

    Article  Google Scholar 

  • Hey, R., Duennebier, F.K., and Morgan, W.J., 1980. Propagating rifts on midocean ridges. Journal of Geophysical Research, 85: 3647–3658.

    Google Scholar 

  • Hey, R.N., Naar, D.F., Kleinrock, M.C., Phipps Morgan, W.J., Morales, E., and Schilling, J.‐G., 1985. Microplate tectonics along a superfast seafloor spreading system near Easter Island. Nature, 317: 320–325.

    Article  Google Scholar 

  • Johnson, H.P., 1979. Magnetization of the oceanic crust. Reviews of Geophysics and Space Physics, 17: 215–225.

    Google Scholar 

  • Kidd, R.G.W., 1977. The nature and shape of the sources of marine magnetic anomalies. Earth and Planetary Science Letters, 33: 310–320.

    Article  Google Scholar 

  • Larson, R.L., and Chase, C.G., 1972. Late Mesozoic evolution of the western Pacific Ocean. Geological Society of America Bulletin, 83: 3627–3644.

    Article  Google Scholar 

  • Larson, R.L., and Pitman, W.C., 1972. Worldwide correlation of Mesozoic magnetic anomalies and its implications. Geological Society of America Bulletin, 83: 3645–3662.

    Article  Google Scholar 

  • Macdonald, K.C., Miller, S.P., Luyendyk, B.P., Atwater, T.M., and Shure, L., 1983. Investigation of a Vine‐Matthews magnetic lineation from a submersible: the source and character of marine magnetic anomalies. Journal of Geophysical Research, 88: 3403–3418.

    Google Scholar 

  • Minster, B.J., and Jordan, T.H., 1978. Present‐day plate motions. Journal of Geophysical Research, 83: 5331–5354.

    Google Scholar 

  • Morley, L.W., and Larochelle, A., 1964. Paleomagnetism as a means of dating geological events. Royal Society of Canada Special Publication, 8: 39–50.

    Google Scholar 

  • Mueller, R.D., Roest, W.R., Royer, J.‐Y., Gahagan, L.M., and Sclater, J.G., 1996. Age of the Ocean Floor. Report MGG‐12, Data Announcement 96‐MGG‐04. Boulder, CO: National Geophysical Data Center.

    Google Scholar 

  • Pariso, J.E., and Johnson, H.P., 1993. Do layer 3 rocks make a significant contribution to marine magnetic anomalies? In situ magnetization of gabbros at ocean drilling program hole 735B. Journal of Geophysical Research, 98: 16033–16052.

    Google Scholar 

  • Petronotis, K.E., Gordon, R.G., and Acton, G., 1994. A 57 Ma Pacific plate paleomagnetic pole determined from a skewness analysis of crossings of marine magnetic anomaly 25r. Geophysical Journal International, 118: 529–544.

    Article  Google Scholar 

  • Pitman, W.C., and Heirtzler, J.R., 1966. Magnetic anomalies over the Pacific‐Antarctic ridge. Science, 154: 1164.

    Article  Google Scholar 

  • Pouliquen, G., Gallet, Y., Patriat, P., Dyment, J., and Tamura, C., 2001. A geomagnetic record over the last 3.5 million years from deep‐tow magnetic anomaly profiles across the Central Indian Ridge. Journal of Geophysical Research, 106: 10941–10960.

    Article  Google Scholar 

  • Raff, A.D., and Mason, R.G., 1961. A magnetic survey off the west coast of North America, 40‐N to 52‐N. Bulletin of Geological Society of America, 72: 1267–1270.

    Article  Google Scholar 

  • Schouten, H., Klitgord, K., and Gallo, D., 1993. Edge‐driven microplate kinematics. Journal of Geophysical Research, 98: 6689–6702.

    Google Scholar 

  • Schouten, H., Tivey, M.A., Fornari, D.J., and Cochran, J.R., 1999. The central anomaly magnetic high: constraints on volcanic construction of seismic layer 2A at a fast‐spreading midocean ridge, the East Pacific Rise at 9°30–50′N. Earth and Planetary Science Letters, 169: 37–50.

    Article  Google Scholar 

  • Scotese, C.R., 1997. Continental Drift, 7th Edition. Arlington, TX: PALEOMAP Project, p. 79.

    Google Scholar 

  • Talwani, M., Windisch, C.C., and Langseth, M.G., 1971. Reykjanes ridge crest: a detailed geophysical study. Journal of Geophysical Research, 76: 473–517.

    Google Scholar 

  • Tivey, M., 1996. Vertical magnetic structure of ocean crust determined from near‐bottom magnetic field measurements. Journal of Geophysical Research, 101: 20275–20296.

    Article  Google Scholar 

  • Tivey, M.A., 2004. Paving the seafloor—brick by brick. Oceanus, 42: 44–47.

    Google Scholar 

  • Tivey, M.A., Bradley, A., Yoerger, D., Catanach, R., Duester, A., Liberatore, S., and Singh, H., 1997. Autonomous underwater vehicle maps seafloor. EOS, 78: 229–230.

    Article  Google Scholar 

  • Tivey, M., Johnson, H.P., Fleutelot, C., Hussenoeder, S., Lawrence, R., Waters, C., and Wooding, B., 1998. Direct measurement of magnetic reversal polarity boundaries in a cross‐section of oceanic crust. Geophysical Research Letters, 25: 3631–3634.

    Article  Google Scholar 

  • Vine, F.J., 1966. Spreading of the ocean floor: new evidence. Science, 154: 1405–1425.

    Article  Google Scholar 

  • Vine, F.J., and Matthews, D.H., 1963. Magnetic anomalies over oceanic ridges. Nature, 199: 947–949.

    Article  Google Scholar 

  • Vine, F.J., and Wilson, J.T., 1965. Magnetic anomalies over a young oceanic ridge off Vancouver Island. Science, 150: 485–489.

    Article  Google Scholar 

  • Vogt, P.R., Anderson, C.N., and Bracey, D.R., 1971. Mesozoic magnetic anomalies, sea floor spreading, and geomagnetic reversals in the southwestern North Atlantic. Journal of Geophysical Research, 76: 4796–4823.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Tivey, M.A. (2007). Vine‐Matthews‐Morley Hypothesis. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_314

Download citation

Publish with us

Policies and ethics