Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Vine‐Matthews‐Morley Hypothesis

  • Maurice A. Tivey
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_314


The Vine‐Matthews‐Morley (VMM) hypothesis states that, when ocean crust forms at a midocean ridge (i.e., a spreading center), the cooling crust becomes magnetized in the direction of Earth's prevailing magnetic field as it cools below the Curie temperature of the magnetic minerals (Morley and Larochelle, 1964; Vine and Matthews, 1963). Typically this Curie temperature is between 150 and 300 °C for titanomagnetite, the primary magnetic mineral in the upper oceanic crust, and ∼580 °C for pure magnetite found in the lower ocean crust. The ocean crust moves away from the spreading center through the process of “seafloor spreading” and in this way the magnetic signal recorded in the newly formed crust is preserved (Figure V5). A good analogy is that of a tape recorder where the ocean crust is the magnetic tape and Earth's magnetic field is the signal, which is recorded onto the moving tape. In this way, changes in Earth's magnetic field polarity through time are preserved in the...
This is a preview of subscription content, log in to check access.


  1. Acton, G.D., and Gordon, R.G., 1991. A 65 Ma paleomagnetic pole for the Pacific Plate from the skewness of magnetic anomalies 27r‐31. Geophysical Journal International, 106: 407–420.CrossRefGoogle Scholar
  2. Allerton, S., and Tivey, M.A., 2001. Magnetic polarity structure of lower oceanic crust. Geophysical Research Letters, 28: 423–426.CrossRefGoogle Scholar
  3. Atwater, T.M., and Mudie, J., 1973. Detailed near‐bottom geophysical study of the Gorda Rise. Journal of Geophysical Research, 78: 8665–8686.Google Scholar
  4. Bowers, N.E., Cande, S.C., Gee, J.S., Hildebrand, J.A., and Parker, R.L., 2001. Fluctuations of the paleomagnetic field during chron C5 as recorded in near‐bottom marine magnetic anomaly data. Journal of Geophysical Research, 106: 26379–26396.CrossRefGoogle Scholar
  5. Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research, 100: 6093–6095.CrossRefGoogle Scholar
  6. Channell, J.E.T., Erba, E., Nakanishi, M., and Tamaki, K., 1995. Late Jurassic‐Early Cretaceous time scales and oceanic magnetic anomaly block models. In Berggren, W.A., Kent, D.V., Aubry, M.‐P., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation, Volume 54: Special Publication. Tulsa, OK: SEPM (Society for Sedimentary Geology), pp. 51–63.Google Scholar
  7. Courtillot, V., 1980. Plaques, microplaques et dechirures lithospheriques: une hierarchie de structures tectoniques de l'echelle du globe a celle du terrain. Bulletin de la Societe Geologique de France, 12: 981–984.Google Scholar
  8. Cox, A., Doell, R.R., and Dalrymple, G.B., 1963. Geomagnetic polarity epochs and Pleistocene geochronology. Nature, 198: 1049–1051.CrossRefGoogle Scholar
  9. DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1990. Current plate motions. Geophysical Journal International, 101: 425–478.CrossRefGoogle Scholar
  10. Dietz, R.S., 1961. Continent and ocean basin evolution by spreading of the seafloor. Nature, 190: 854–857.CrossRefGoogle Scholar
  11. Gee, J.S., Cande, S.C., Hildebrand, J.A., Donnelly, K., and Parker, R.L., 2000. Geomagnetic intensity variations over the past 780 kyr obtained from near‐seafloor magnetic anomalies. Nature, 408: 827–832.CrossRefGoogle Scholar
  12. Girdler, R.W., and Peter, G., 1960. An example of the importance of natural remanent magnetization in the interpretation of magnetic anomalies. Geophysical Prospecting, 8: 474–483.CrossRefGoogle Scholar
  13. Glen, W., 1982. The Road to Jaramillo. Critical Years of the Revolution in Earth Science. Stanford, CA: Stanford University Press, 459 pp.Google Scholar
  14. Guyodo, Y., and Valet, J.‐P., 1999. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature, 399: 249–252.CrossRefGoogle Scholar
  15. Harrison, C.G.A., 1981. Magnetism of the oceanic crust. In Emiliani, C. (ed.), The Sea, Volume 7. New York: Wiley, pp. 219–237.Google Scholar
  16. Heirtzler, J.R., Dickson, G.O., Herron, E.M., Pittman, W.C., III, and Le Pichon, X., 1968. Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. Journal of Geophysical Research, 73: 2119–2136.Google Scholar
  17. Hess, H.H., 1962. History of ocean basins. In Engel, A.E.J., James, H.L., and Leonard, B.F. (eds.) Petrologic Studies: The Buddington Volume. Boulder, CO: Geological Society of America, pp. 599–620.Google Scholar
  18. Hey, R., 1977. A new class of “pseudofaults” and their bearing on plate tectonics: a propagating rift model. Earth and Planetary Science Letters, 37: 321–325.CrossRefGoogle Scholar
  19. Hey, R., Duennebier, F.K., and Morgan, W.J., 1980. Propagating rifts on midocean ridges. Journal of Geophysical Research, 85: 3647–3658.Google Scholar
  20. Hey, R.N., Naar, D.F., Kleinrock, M.C., Phipps Morgan, W.J., Morales, E., and Schilling, J.‐G., 1985. Microplate tectonics along a superfast seafloor spreading system near Easter Island. Nature, 317: 320–325.CrossRefGoogle Scholar
  21. Johnson, H.P., 1979. Magnetization of the oceanic crust. Reviews of Geophysics and Space Physics, 17: 215–225.Google Scholar
  22. Kidd, R.G.W., 1977. The nature and shape of the sources of marine magnetic anomalies. Earth and Planetary Science Letters, 33: 310–320.CrossRefGoogle Scholar
  23. Larson, R.L., and Chase, C.G., 1972. Late Mesozoic evolution of the western Pacific Ocean. Geological Society of America Bulletin, 83: 3627–3644.CrossRefGoogle Scholar
  24. Larson, R.L., and Pitman, W.C., 1972. Worldwide correlation of Mesozoic magnetic anomalies and its implications. Geological Society of America Bulletin, 83: 3645–3662.CrossRefGoogle Scholar
  25. Macdonald, K.C., Miller, S.P., Luyendyk, B.P., Atwater, T.M., and Shure, L., 1983. Investigation of a Vine‐Matthews magnetic lineation from a submersible: the source and character of marine magnetic anomalies. Journal of Geophysical Research, 88: 3403–3418.Google Scholar
  26. Minster, B.J., and Jordan, T.H., 1978. Present‐day plate motions. Journal of Geophysical Research, 83: 5331–5354.Google Scholar
  27. Morley, L.W., and Larochelle, A., 1964. Paleomagnetism as a means of dating geological events. Royal Society of Canada Special Publication, 8: 39–50.Google Scholar
  28. Mueller, R.D., Roest, W.R., Royer, J.‐Y., Gahagan, L.M., and Sclater, J.G., 1996. Age of the Ocean Floor. Report MGG‐12, Data Announcement 96‐MGG‐04. Boulder, CO: National Geophysical Data Center.Google Scholar
  29. Pariso, J.E., and Johnson, H.P., 1993. Do layer 3 rocks make a significant contribution to marine magnetic anomalies? In situ magnetization of gabbros at ocean drilling program hole 735B. Journal of Geophysical Research, 98: 16033–16052.Google Scholar
  30. Petronotis, K.E., Gordon, R.G., and Acton, G., 1994. A 57 Ma Pacific plate paleomagnetic pole determined from a skewness analysis of crossings of marine magnetic anomaly 25r. Geophysical Journal International, 118: 529–544.CrossRefGoogle Scholar
  31. Pitman, W.C., and Heirtzler, J.R., 1966. Magnetic anomalies over the Pacific‐Antarctic ridge. Science, 154: 1164.CrossRefGoogle Scholar
  32. Pouliquen, G., Gallet, Y., Patriat, P., Dyment, J., and Tamura, C., 2001. A geomagnetic record over the last 3.5 million years from deep‐tow magnetic anomaly profiles across the Central Indian Ridge. Journal of Geophysical Research, 106: 10941–10960.CrossRefGoogle Scholar
  33. Raff, A.D., and Mason, R.G., 1961. A magnetic survey off the west coast of North America, 40‐N to 52‐N. Bulletin of Geological Society of America, 72: 1267–1270.CrossRefGoogle Scholar
  34. Schouten, H., Klitgord, K., and Gallo, D., 1993. Edge‐driven microplate kinematics. Journal of Geophysical Research, 98: 6689–6702.Google Scholar
  35. Schouten, H., Tivey, M.A., Fornari, D.J., and Cochran, J.R., 1999. The central anomaly magnetic high: constraints on volcanic construction of seismic layer 2A at a fast‐spreading midocean ridge, the East Pacific Rise at 9°30–50′N. Earth and Planetary Science Letters, 169: 37–50.CrossRefGoogle Scholar
  36. Scotese, C.R., 1997. Continental Drift, 7th Edition. Arlington, TX: PALEOMAP Project, p. 79.Google Scholar
  37. Talwani, M., Windisch, C.C., and Langseth, M.G., 1971. Reykjanes ridge crest: a detailed geophysical study. Journal of Geophysical Research, 76: 473–517.Google Scholar
  38. Tivey, M., 1996. Vertical magnetic structure of ocean crust determined from near‐bottom magnetic field measurements. Journal of Geophysical Research, 101: 20275–20296.CrossRefGoogle Scholar
  39. Tivey, M.A., 2004. Paving the seafloor—brick by brick. Oceanus, 42: 44–47.Google Scholar
  40. Tivey, M.A., Bradley, A., Yoerger, D., Catanach, R., Duester, A., Liberatore, S., and Singh, H., 1997. Autonomous underwater vehicle maps seafloor. EOS, 78: 229–230.CrossRefGoogle Scholar
  41. Tivey, M., Johnson, H.P., Fleutelot, C., Hussenoeder, S., Lawrence, R., Waters, C., and Wooding, B., 1998. Direct measurement of magnetic reversal polarity boundaries in a cross‐section of oceanic crust. Geophysical Research Letters, 25: 3631–3634.CrossRefGoogle Scholar
  42. Vine, F.J., 1966. Spreading of the ocean floor: new evidence. Science, 154: 1405–1425.CrossRefGoogle Scholar
  43. Vine, F.J., and Matthews, D.H., 1963. Magnetic anomalies over oceanic ridges. Nature, 199: 947–949.CrossRefGoogle Scholar
  44. Vine, F.J., and Wilson, J.T., 1965. Magnetic anomalies over a young oceanic ridge off Vancouver Island. Science, 150: 485–489.CrossRefGoogle Scholar
  45. Vogt, P.R., Anderson, C.N., and Bracey, D.R., 1971. Mesozoic magnetic anomalies, sea floor spreading, and geomagnetic reversals in the southwestern North Atlantic. Journal of Geophysical Research, 76: 4796–4823.Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Maurice A. Tivey

There are no affiliations available