Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Magnetization, Thermoremanent, in Minerals

  • Gunther Kletetschka
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_199

Thermoremanent magnetization

Perhaps the best understood of the primary magnetizations, of natural rocks and specimens, is thermal remanent magnetization (TRM). Most of the natural rocks are magnetized primarily by the geomagnetic field (∼30 000 nT) and acquire natural remanent magnetization (NRM). Magnetic minerals acquire TRM when they are contained within the rock that is cooled in an external magnetic field from temperatures above the minerals’ blocking temperatures. Blocking of remanent magnetization at a specific temperature results in locking of a specific direction and intensity of magnetization as it becomes stable on the timescale of the TRM acquisition.

The generally recognized first‐order theory of TRM can be applied only to small uniformly magnetized grains (Néel, 1949) and it provides a reasonable explanation for the intensity of TRM vs inducing field. The theory explains the changes of stability of TRM with temperature and with the inducing field, explaining how a rock...

This is a preview of subscription content, log in to check access.


  1. Acuña, M.H., Connerney, J.E.P., Ness, N.F., Lin, R.P., Mitchell, D., Carlson, C.W., McFadden, J., Anderson, K.A., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., and Cloutier, P., 1999. Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science, 284: 790–793.CrossRefGoogle Scholar
  2. Borradaile, G.J., 1996. An 1800‐year archeological experiment in remagnetization. Geophysical Research Letters, 23(13): 1585–1588.CrossRefGoogle Scholar
  3. Cisowski, S., and Fuller, M., 1986. Lunar paleointensities via the IRMs normalization method and the early magnetic history of the Moon. In Hartmann, W.K., Phillips, R.J., and Taylor, G.J. (eds.), Origin of the Moon. Houston: Lunar and Planetary Institute, pp. 411–424.Google Scholar
  4. Dekkers, M.J., 1989. Magnetic properties of natural pyrrhotite. II. High‐ and low‐temperature behavior of J rs and TRM as a function of grain size. Physics of the Earth and Planetary Interiors, 57: 266–283.CrossRefGoogle Scholar
  5. Dunlop, D.J., 1990. Developments in rock magnetism. Reports on Progress in Physics, 53: 707–792.CrossRefGoogle Scholar
  6. Dunlop, D.J., and Argyle, K.S., 1997. Thermoremanence, anhysteretic remanence and susceptibility of submicron magnetites: nonlinear field dependence and variation with grain size. Journal of Geophysical Research‐Solid Earth, 102(B9): 20,199–20,210.Google Scholar
  7. Dunlop, D.J., and Kletetschka, G., 2001. Multidomain hematite: a source of planetary magnetic anomalies? Geophysical Research Letters, 28(17): 3345–3348.CrossRefGoogle Scholar
  8. Dunlop, D.J., and Özdemir, Ö., 1997. Rock magnetism: fundamentals and frontiers. In Edwards, D. (ed.), Cambridge Studies in Magnetism, Vol. 3. Cambridge: Cambridge University Press, 573 pp.Google Scholar
  9. Dunlop, D.J., and Waddington, E.D., 1975. Field‐dependence of thermoremanent magnetization in igneous rocks. Earth and Planetary Science Letters, 25(1): 11–25.CrossRefGoogle Scholar
  10. Dunlop, D., and West, G., 1969. An experimental evaluation of single‐domain theories. Reviews of Geophysics, 7: 709–757.Google Scholar
  11. Everitt, C.W.F., 1962. Thermoremanent magnetization II: experiments on multidomain grains. Philosophical Magazine, 7: 583–597.CrossRefGoogle Scholar
  12. Fletcher, E.J., and O'Reilly, W., 1974. Contribution of Fe2+ ions to the magnetocrystalline anisotropy constant K 1 of Fe3–xTixO4 (0 < x < 0.1). Journal of Physics C, 7: 171–178.CrossRefGoogle Scholar
  13. Hargraves, R.B., and Young, W.M., 1969. Source of stable remanent magnetism in Lambertville diabase. American Journal of Science, 267: 1161–1177.CrossRefGoogle Scholar
  14. Heller, F., and Markert, H., 1973. Age of viscous remanent magnetization of Hadrians wall (Northern‐England). Geophysical Journal of the Royal Astronomical Society, 31(4): 395–406.Google Scholar
  15. Hoye, G.S., and Evans, M.E., Remanent magnetizations in oxidized olivine. Geophysical Journal of the Royal Astronomical Society, 41: 139–151.Google Scholar
  16. Kletetschka, G., Taylor, P.T., Wasilewski, P.J., and Hill, H.G.M., 2000a. The magnetic properties of aggregate polycrystalline diamond: implication for carbonado petrogenesis. Earth and Planetary Science Letters, 181(3): 279–290.CrossRefGoogle Scholar
  17. Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2000b. Hematite vs. magnetite as the signature for planetary magnetic anomalies? Physics of the Earth and Planetary Interiors, 119(3–4): 259–267.CrossRefGoogle Scholar
  18. Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2000c. Unique thermoremanent magnetization of multidomain sized hematite: implications for magnetic anomalies. Earth and Planetary Science Letters, 176(3–4): 469–479.CrossRefGoogle Scholar
  19. Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2002. The role of hematite‐ilmenite solid solution in the production of magnetic anomalies in ground and satellite based data. Tectonophysics, 347(1–3): 166–177.Google Scholar
  20. Kletetschka, G., Acuna, M.H., Kohout, T., Wasilewski, P.J., and Connerney, J.E.P., 2004. An empirical scaling law for acquisition of thermoremanent magnetization. Earth and Planetary Science Letters, 226(3–4): 521–528.CrossRefGoogle Scholar
  21. Moskowitz, B.M., 1993. High‐temperature magnetostriction of magnetite and titanomagnetites. Journal of Geophysical Research, 98: 359–371.Google Scholar
  22. Néel, L., 1949. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales de Géophysique, 5: 99–136.Google Scholar
  23. Néel, L., 1955. Some theoretical aspects of rock magnetism. Advances in Physics, 4: 191–243.CrossRefGoogle Scholar
  24. Özdemir, Ö., and O'Reilly, W., 1982. An experimental study of the intensity and stability of thermoremanent magnetization acquired by synthetic monodomain titanomagnetite substituted by aluminium. Geophysical Journal of the Royal Astronomical Society, 70: 141–154.Google Scholar
  25. Shcherbakova, V.V., Shcherbakov, V.P., and Heider, F., 2000. Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains. Journal of Geophysical Research‐Solid Earth, 105(B1): 767–781.CrossRefGoogle Scholar
  26. Stacey, F.D., 1958. Thermoremanent magnetization (TRM) of multidomain grains in igneous rocks. Philosophical Magazine, 3: 1391–1401.CrossRefGoogle Scholar
  27. Stacey, F.D., 1963. The physical theory of rock magnetism. Advances in Physics, 12: 45–133.CrossRefGoogle Scholar
  28. Stacey, F.D., and Banerjee, S.K., 1974. The Physical Principles of Rock Magnetism. Amsterdam: Elsevier, 195 pp.Google Scholar
  29. Syono, Y., and Ishikawa, Y., 1963a. Magnetocrystalline anisotropy of xFe2TiO4.(1–x)Fe3O4. Journal of the Physical Society of Japan, 18: 1230–1231.CrossRefGoogle Scholar
  30. Syono, Y., and Ishikawa, Y., 1963b. Magnetostriction constants of xFe2TiO4.(1–x)Fe3O4. Journal of the Physical Society of Japan, 18: 1231–1232.CrossRefGoogle Scholar
  31. Tucker, P., and O'Reilly, W., 1980. The acquisition of thermoremanent magnetization by multidomain single‐crystal titanomagnetite. Geophysical Journal of the Royal Astronomical Society, 63: 21–36.Google Scholar
  32. Wasilewski, P.J., 1977. Magnetic and microstructural properties of some lodestones. Physics of the Earth and Planetary Interiors, 15: 349–362.CrossRefGoogle Scholar
  33. Wasilewski, P.J., 1981. Magnetization of small iron‐nickel spheres. Physics of the Earth and Planetary Interiors, 26: 149–161.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gunther Kletetschka

There are no affiliations available