Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Magnetization, Thermoremanent

  • Özden Özdemir
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_198

Introduction

Thermoremanent magnetization (TRM) is acquired when magnetic minerals cool in a weak magnetic field H from above their Curie temperatures. TRM is the most important remanent magnetization used in paleomagnetism. It is almost always close to parallel to the field which produced it, and its intensity is proportional to the strength of the field for weak fields like the Earth's. The TRM of rocks is therefore a vast storehouse of recorded information about past movements of the Earth's lithospheric plates and the history of the geomagnetic field.

The primary natural remanent magnetization of an igneous rock or a high‐grade metamorphic rock is a TRM. Newly erupted seafloor lavas at mid‐ocean ridges acquire an intense TRM on cooling below the Curie temperature TC. Rapid cooling also results in fine grain size, which makes the TRM highly stable, so that oceanic basalts are excellent recorders of the paleomagnetic field. However, the TRM is largely replaced within at most a...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Ambatiello, A., Fabian, K., and Hoffmann, V., 1999. Magnetic domain structure of multidomain magnetite as a function of temperature: observations by Kerr microscopy. Physics of the Earth and Planetary Interiors, 112: 55–80.CrossRefGoogle Scholar
  2. Coe, R.S., 1967. The determination of paleointensities of the earth's magnetic field with emphasis on mechanisms which could cause non‐ideal behaviour in Thellier's method. Journal of Geomagnetism and Geoelectricity, 19: 157–179.Google Scholar
  3. Clauter, D.A., and Schmidt, V.A., 1981. Shifts in blocking temperature spectra for magnetite powders as a function of grain size and applied magnetic field. Physics of the Earth and Planetary Interiors, 26: 81–92.CrossRefGoogle Scholar
  4. Day, D., 1977. TRM and its variation with grain size. Journal of Geomagnetism and Geoelectricity, 29: 233–265.Google Scholar
  5. Dodson, M.H., and McClelland‐Brown, E., 1980. Magnetic blocking temperatures of single‐domain grains during slow cooling. Journal of Geophysical Research, 85: 2625–2637.Google Scholar
  6. Dunlop, D.J., 1973. Thermoremanent magnetization in submicroscopic magnetite. Journal of Geophysical Research, 78: 7602–7613.Google Scholar
  7. Dunlop, D.J., and Argyle, K.S., 1997. Thermoremanence, anhysteretic remanence and susceptibility of submicron magnetites: nonlinear field dependence and variation with grain size. Journal of Geophysical Research, 102: 20 199–20 210.Google Scholar
  8. Dunlop, D.J., and Kletetschka, G., 2001. Multidomain hematite: a source of planetary magnetic anomalies? Geophysical Research Letters, 28: 3345–3348.CrossRefGoogle Scholar
  9. Dunlop, D.J., and Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge and New York: Cambridge University Press.Google Scholar
  10. Dunlop, D.J., and Özdemir, Ö., 2001. Beyond Néel theories: thermal demagnetization of narrow‐band partial thermoremanent magnetizations. Physics of the Earth and Planetary Interiors, 126: 43–57.CrossRefGoogle Scholar
  11. Dunlop, D.J., and Waddington, E.D., 1975. The field dependence of thermoremanent magnetization in igneous rocks. Earth and Planetary Science Letters, 25: 11–25.CrossRefGoogle Scholar
  12. Dunlop, D.J., and West, G.F., 1969. An experimental evaluation of single domain theories. Reviews of Geophysics, 7: 709–757.Google Scholar
  13. Everitt, C.W.F., 1961. Thermoremanent magnetization. I. Experiments on single domain grains. Philosophical Magazine, 6: 713–726.CrossRefGoogle Scholar
  14. Everitt, C.W.F., 1962. Thermoremanent magnetization. III. Theory of multidomain grains. Philosophical Magazine, 7: 599–616.CrossRefGoogle Scholar
  15. Fabian, K., 2000. Acquisition of thermoremanent magnetization in weak magnetic fields. Geophysical Journal International, 142: 478–486.CrossRefGoogle Scholar
  16. Fox, J.M.W., and Aitken, M.J., 1980. Cooling‐rate dependence of thermoremanent magnetisation. Nature, 283: 462–463.CrossRefGoogle Scholar
  17. Halgedahl, S.L., and Fuller, M., 1980. Magnetic domain observations of nucleation processes in fine particles of intermediate titanomagnetite. Nature, 288: 70–72.CrossRefGoogle Scholar
  18. Halgedahl, S.L., and Fuller, M., 1983. The dependence of magnetic domain structure upon magnetization state with emphasis on nucleation as a mechanisms for pseudo-single-domain behaviour. Journal of Geophysical Research, 88: 6506–6522.Google Scholar
  19. Halgedahl, S.L., Day, R., and Fuller, M., 1980. The effect of cooling rate on the intensity of weak‐field TRM in single domain magnetite. Journal of Geophysical Research, 85: 3690–3698.Google Scholar
  20. Heider, F., Halgedahl, S.L., and Dunlop, D.J., 1988. Temperature dependence of magnetic domains in magnetite crystals. Geophysical Research Letters, 15: 499–502.Google Scholar
  21. McClelland, E., and Sugiura, N., 1987. A kinematic model of TRM acquisition in multidomain magnetite. Physics of the Earth and Planetary Interiors, 46: 9–23.CrossRefGoogle Scholar
  22. Menyeh, A., and O'Reilly, W., 1998. Thermoremanence in monoclinic pyrrhotite particles containing few domains. Geophysical Research Letters, 25(18): 3461–3464.CrossRefGoogle Scholar
  23. Metcalf, M., and Fuller, M., 1987. Domain observations of titanomagnetites during hysteresis at elevated temperatures and thermal cycling. Physics of the Earth and Planetary Interiors, 46: 120–126.CrossRefGoogle Scholar
  24. Néel, L., 1949. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales de Geophysique, 5: 99–136.Google Scholar
  25. Néel, L., 1955. Some theoretical aspects of rock magnetism. Advances in Physics, 4: 191–243.CrossRefGoogle Scholar
  26. Özdemir, Ö., and Dunlop, D.J., 1997. Effect of crystal defects and internal stress on the domain structure and magnetic properties of magnetite. Journal of Geophysical Research, 102: 20 211–20 224.CrossRefGoogle Scholar
  27. Özdemir, Ö., and Dunlop, D.J., 2002. Thermoremanence and stable memory of single‐domain hematite. Geophysical Research Letters, 29:doi:10.1029/2002GL015597.Google Scholar
  28. Özdemir, Ö., and O'Reilly, W., 1982. An experimental study of thermoremanent magnetization acquired by synthetic monodomain titanomaghemites. Journal of Geomagnetism and Geoelectricity, 34: 467–478.Google Scholar
  29. Schmidt, V.A., 1973. A multidomain model of thermoremanence. Earth and Planetary Science Letters, 20: 440–446.CrossRefGoogle Scholar
  30. Shcherbakov, V.P., McClelland, E., and Shcherbakova, V.V., 1993. A model of multidomain thermoremanent magnetization incorporating temperature‐variable domain structure. Journal of Geophysical Research, 98: 6201–6216.Google Scholar
  31. Stacey, F., 1958. Thermoremanent magnetization (TRM) of multidomain grains in igneous rocks. Philosophical Magazine, 3: 1391–1401.CrossRefGoogle Scholar
  32. Stacey, F., and Banerjee, S.K., 1974. The Physical Principles of Rock Magnetism. Elsevier, Amsterdam.Google Scholar
  33. Stoner, E.C., and Wohlfarth, E.P., 1948. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London, A240: 599–642.CrossRefGoogle Scholar
  34. Sugiura, N., 1980. Field dependence of blocking temperature of single‐domain magnetite. Earth and Planetary Science Letters, 46: 438–442.CrossRefGoogle Scholar
  35. Thellier, E., 1938. Sur l'aimantation des terres cuites et ses applications géophysiques. Annales de. l'Institut de Physique du Globe, Université de Paris, 16: 157–302.Google Scholar
  36. Thellier, E., and Thellier, O., 1959. Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Géophysique, 15: 285–376.Google Scholar
  37. Tucker, P., and O'Reilly, W., 1980. The acquisition of thermoremanent magnetization by multidomain single‐crystal titanomagnetite. Geophysical Journal of the Royal Astronomical Society, 60: 21–36.Google Scholar
  38. Winklhofer, M., Fabian, K., and Heider, F., 1997. Magnetic blocking temperatures of magnetite calculated with a three‐dimensional micromagnetic model. Journal of Geophysical Research, 102: 22 695–22 709.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Özden Özdemir

There are no affiliations available