Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Magnetization, Isothermal Remanent

  • Mike Jackson
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_192

Introduction

As indicated by the name, isothermal remanent magnetization (IRM) is a remanent magnetization (RM) acquired without the aid of changes in temperature. There are actually many processes that can produce RMs isothermally (see, e.g., CRM, VRM, DRM, and ARM), but by convention we restrict the use of the term IRM to denote a remanence resulting from the application and subsequent removal of an applied DC field. IRMs are thus intimately related to hysteresis. Conventional nomenclature uses MR for the IRM determined by measurement of a hysteresis loop (and MRS if the cycle reaches saturation), whereas IRM and SIRM are typically used for remanence measurements made with a zero‐field magnetometer after magnetization on a separate instrument (electromagnet, pulse magnetizer, etc.).

Weak fields, such as the geomagnetic field, are generally very ineffective in producing IRMs, and therefore IRMs are rarely significant components of NRM. (A notable exception is found in rocks struck by...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Banerjee, S.K., 1963. An attempt to observe the basal plane anisotropy of hematite. Philosophical Magazine, 8: 2119–2120.CrossRefGoogle Scholar
  2. Cañon‐Tapia, E., 1996. Single‐grain versus distribution anisotropy: a simple three‐dimensional model. Physics of the Earth and Planetary Interiors, 94: 149–158.CrossRefGoogle Scholar
  3. Cisowski, S., 1981. Interacting vs. non‐interacting single‐domain behavior in natural and synthetic samples. Physics of the Earth and Planetary Interiors, 26: 77–83.CrossRefGoogle Scholar
  4. Cox, A., 1961. Anomalous remanent magnetization of basalt. US Geological Survey Bulletin, 1083‐E: 131–160.Google Scholar
  5. Cox, A., and Doell, R.R., 1967. Measurement of high‐coercivity anisotropy. In Collinson, D.W., Creer, K.M., and Runcorn, S.K. (eds.) Methods in Palaeomagnetism. Amsterdam: Elsevier, pp. 477–482.Google Scholar
  6. Daly, L., and Zinsser, H., 1973. Étude comparative des anisotropies de susceptibilité et d'aimantation rémanente isotherme: conséquences pour l'analyse structurale et le paléomagnétisme. Annales de Géophysique, 29: 189–200.Google Scholar
  7. Dankers, P.H.M., 1981. Relationship between median destructive field and coercive forces for dispersed natural magnetite, titanomagnetite, and hematite. Geophysical Journal of the Royal Astronomical Society, 64: 447–461.Google Scholar
  8. Dekkers, M.J., 1997. Environmental magnetism: an introduction. Geologie en Mijnbouw, 76: 163–182.Google Scholar
  9. Dunlop, D.J., 1971. Magnetic properties of fine‐particle hematite. Annales de Géophysique, 27: 269–293.Google Scholar
  10. Dunlop, D.J., 1972. Magnetic mineralogy of unheated and heated red sediments by coercivity spectrum analysis. Geophysical Journal of the Royal Astronomical Society, 27: 37–55.Google Scholar
  11. Dunlop, D.J., 1977. The hunting of the ‘psark’. Journal of Geomagnetism and Geoelectricity, 29: 293–318.Google Scholar
  12. Dunlop, D.J., 1995. Magnetism in rocks. Journal of Geophysical Research B: Solid Earth, 100: 2161–2174.CrossRefGoogle Scholar
  13. Dunlop, D.J., and Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press, 573 pp.Google Scholar
  14. Egli, R., 2003. Analysis of the field dependence of remanent magnetization curves. Journal of Geophysical Research—Solid Earth, 108(B2): 2081, doi:10.1029/2002JB002023.CrossRefGoogle Scholar
  15. Egli, R., 2004a. Characterization of individual rock magnetic components by analysis of remanence curves. 2. Fundamental properties of coercivity distributions. Physics and Chemistry of the Earth, 29: 851–867.Google Scholar
  16. Egli, R., 2004b. Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes. Physics and Chemistry of the Earth, 29: 869–884.Google Scholar
  17. Fabian, K., and Hubert, A., 1999. Shape‐induced pseudo‐single‐domain remanence. Geophysical Journal International, 138: 717–726.CrossRefGoogle Scholar
  18. Fuller, M., 1963. Magnetic anisotropy and paleomagnetism. Journal of Geophysical Research, 68: 293–309.Google Scholar
  19. Gans, R., 1932. Über das magnetische Verhalten isotroper Ferromagnetika. Annalen der Physik, 15: 28–44.CrossRefGoogle Scholar
  20. Graham, K.W.T., 1961. The remagnetization of a surface outcrop by lightning currents. Geophysical Journal of the Royal Astronomical Society, 6: 85–102.Google Scholar
  21. Hargraves, R.B., Johnson, D., and Chan, C.Y., 1991. Distribution anisotropy: the cause of AMS in igneous rocks?. Geophysical Research Letters, 18: 2193–2196.Google Scholar
  22. Henkel, O., 1964. Remanenzverhalten und Wechselwirkungen in hartmagnetischen Teilchenkollektiven. Physica Status Solidi, 7: 919–924.CrossRefGoogle Scholar
  23. Heslop, D., Dekkers, M.J., Kruiver, P.P., and van Oorschot, I.H.M., 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation‐maximization algorithm. Geophysical Journal International, 148: 58–64.CrossRefGoogle Scholar
  24. Jackson, M.J., 1991. Anisotropy of magnetic remanence: a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure and Applied Geophysics, 136: 1–28.CrossRefGoogle Scholar
  25. King, J.W., and Channell, J.E.T., 1991. Sedimentary magnetism, environmental magnetism, and magnetostratigraphy. Reviews of Geophysics Suppl. (IUGG Report—Contributions in Geomagnetism and Paleomagnetism), 358–370.Google Scholar
  26. Kodama, K.P., 1995. Remanence anisotropy as a correction for inclination shallowing: a case study of the Nacimiento Formation. Eos, Transactions of the American Geophysical Union, 76: F160–F161.Google Scholar
  27. Krider, E., and Roble, R.E., 1986. The Earth's Electrical Environment. Washington, DC: National Academy Press.Google Scholar
  28. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17: 159–162.Google Scholar
  29. Maher, B.A., and Thompson, R., 1999. Quaternary Climates, Environments and Magnetism. Cambridge: Cambridge University Press, 390 pp.Google Scholar
  30. Matsuzaki, H., Kobayashi, K., and Momose, K., 1954. On the anomalously strong natural remanent magnetism of the lava of Mount Utsukushi‐ga‐hara. Journal of Geomagnetism and Geoelectricity, 6: 53–56.Google Scholar
  31. Muxworthy, A.R., Williams, W., and Virdee, D., 2003. Effect of magnetostatic interactions on the hysteresis parameters of single‐domain and pseudo‐single‐domain grains. Journal of Geophysical Research, 108: 2517.CrossRefGoogle Scholar
  32. Néel, L., 1949a. Influence des fluctuations thermiques sur l'aimantation de grains ferromagnétiques très fins. Comptes rendus hebdomadaires des séances de l'Académie des Sciences (Paris), Série B, 228: 664–666.Google Scholar
  33. Néel, L., 1949b. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales de Géophysique, 5: 99–136.Google Scholar
  34. Néel, L., 1955. Some theoretical aspects of rock magnetism. Advances in Physics, 4: 191–243.CrossRefGoogle Scholar
  35. Oldfield, F., 1991. Environmental magnetism: a personal perspective. Quaternary Science Reviews, 10: 73–85.CrossRefGoogle Scholar
  36. Pokhil, T.G., and Moskowitz, B.M., 1997. Magnetic domains and domain walls in pseudo‐single‐domain magnetite studied with magnetic force microscopy. Journal of Geophysical Research B: Solid Earth, 102: 22 681–22 694.Google Scholar
  37. Potter, D.K., 2004. A comparison of anisotropy of magnetic remanence methods—a user's guide for application to palaeomagnetism and magnetic fabric studies. In Martin‐Hernández, F., Lüneburg, C.M., Aubourg, C., and Jackson, M. (eds.), Magnetic Fabric: Methods and Applications, Vol. 238. The Geological Society of London. London: Geological Society Special Publications, pp. 21–36.Google Scholar
  38. Robertson, D.J., and France, D.E., 1994. Discrimination of remanence‐carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Physics of the Earth and Planetary Interiors, 82: 223–234.CrossRefGoogle Scholar
  39. Rochette, P., Mathé, P.-E., Esteban, L., Rakoto, H., Bouchez, J.-L., Liu, Q., and Torrent, J., 2005. Non-saturation of the defect moment of goethite and fine-grained hematite up to 57 Teslas, Geophysical Research Letters, 32, doi:10.1029/2005GL024196.Google Scholar
  40. Stephenson, A., 1994. Distribution anisotropy: two simple models for magnetic lineation and foliation. Physics of the Earth and Planetary Interiors, 82: 49–53.CrossRefGoogle Scholar
  41. Stephenson, A., Sadikun, S., and Potter, D.K., 1986. A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals. Geophysical Journal of the Royal Astronomical Society, 84: 185–200.Google Scholar
  42. Stockhausen, H., 1998. Some new aspects for the modelling of isothermal remanent magnetization acquisition curves by cumulative log Gaussian functions. Geophysical Research Letters, 25: 2217–2220.CrossRefGoogle Scholar
  43. Stoner, E.C., and Wohlfarth, E.P., 1948. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London, Series A, 240: 599–602.CrossRefGoogle Scholar
  44. Symons, D.T.A., and Cioppa, M.T., 2000. Crossover plots: a useful method for plotting SIRM data in paleomagnetism. Geophysical Research Letters, 27: 1779–1782.CrossRefGoogle Scholar
  45. Tauxe, L., Constable, C., Johnson, C.L., Koppers, A.A.P., Miller, W.R., and Staudigel, H., 2003. Paleomagnetism of the southwestern USA recorded by 0–5 Ma igneous rocks. Geochemistry, Geophysics, Geosystems, 4(4): 8802, doi:10.1029/2002GC000343.CrossRefGoogle Scholar
  46. Thompson, R., and Oldfield, F., 1986. Environmental Magnetism. London: Allen & Unwin, 227 pp.Google Scholar
  47. Verosub, K.L., and Roberts, A.P., 1995. Environmental magnetism: past, present, and future. Journal of Geophysical Research B: Solid Earth, 100: 2175–2192.CrossRefGoogle Scholar
  48. Verrier, V., and Rochette, P., 2002. Estimating peak currents at ground lightning impacts using remanent magnetization. Geophysical Research Letters, 29: 1867, doi:10.1029/2002GL015207.CrossRefGoogle Scholar
  49. Wasilewski, P., and Kletetschka, G., 1999. Lodestone: nature's only permanent magnet—what it is and how it gets charged. Geophysical Research Letters, 26: 2275–2278.CrossRefGoogle Scholar
  50. Williams, W., and Wright, T.M., 1998. High‐resolution micromagnetic models of fine grains of magnetite. Journal of Geophysical Research, 103: 30537–30550.CrossRefGoogle Scholar
  51. Wohlfarth, E.P., 1958. Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. Journal of Applied Physics, 29: 595–596.CrossRefGoogle Scholar
  52. Wohlfarth, E.P., and Tonge, D.G., 1957. The remanent magnetization of single‐domain ferromagnetic particles. Philosophical Magazine, 2: 1333–1344.CrossRefGoogle Scholar
  53. Worm, H.U., 1999. Time‐dependent IRM: a new technique for magnetic granulometry. Geophysical Research Letters, 26: 2557–2560.CrossRefGoogle Scholar
  54. Worm, H.‐U., and Jackson, M., 1999. The superparamagnetism of Yucca Mountain Tuff. Journal of Geophysical Research B: Solid Earth, 104: 25,415–25,425.Google Scholar
  55. Zapletal, K., 1992. Self‐reversal of isothermal remanent magnetization in a pyrrhotite (Fe7S8) crystal. Physics of the Earth and Planetary Interiors, 70: 302–311.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Mike Jackson

There are no affiliations available