Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Magnetization, Chemical Remanent (CRM)

  • Shaul Levi
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_190

Chemical remanent magnetism (CRM) is imparted to ferro‐ and ferrimagnetic minerals by chemical processes, at temperatures below their Curie points, in the presence of an effective magnetic field. Here, chemical processes are considered broadly to include but not be limited to modifications in oxidation state, phase changes and crystal growth. The effective magnetic field is the resultant vector field acting on the chemically‐altered material, including the external and various interaction fields.

Nearly a century and half ago, Beetz (1860) discovered CRM during laboratory electrolytic depositions of iron; these observations supported Weber's hypothesis that some atoms possess intrinsic magnetization. These results were confirmed by Maurain (1901 and 1902) with electrolytic depositions of iron and nickel in the presence of external fields. Koenigsberger (1938, part 1, p. 122 & part 2, p. 319) noted the presence of coherent remanence in some sedimentary rocks, which he called crystallizat...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Bagin, V.I., and Malumyan, L.M., 1976. Iron containing minerals in oil‐impregnated sedimentary rocks from a producing rock mass of Azerbaidzhan. Izvestiya, Academy of Sciences, USSR. Physics of the solid earth (English translation) 12: 273–277.Google Scholar
  2. Becker, J.J., 1957. Magnetic method for the measurement of precipitate particle size in a Cu‐Co alloy. Journal of Metals, 9: 59–63.Google Scholar
  3. Beetz, W., 1860. Über die inneren Vorgänge, welche die Magnetisierung bedingen. Annalen der Physik und Chemie, 111: 107–121.CrossRefGoogle Scholar
  4. Benthien, R.H., and Elmore, R.D., 1987. Origin of magnetization in the phosphoria formation at Sheep Mountain, Wyoming: a possible relationship with hydrocarbons. Geophysical Research Letters, 14: 323–326.Google Scholar
  5. Berner, R.A., 1970. Sedimentary pyrite formation. American Journal of Science, 268: 1–23.CrossRefGoogle Scholar
  6. Berner, R.A., 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48: 605–615.CrossRefGoogle Scholar
  7. Blackett, P.M.S., 1956. Lectures on Rock Magnetism. Jerusalem: The Weizmann Science Press of Israel, 131 pp.Google Scholar
  8. Chauvin, A., Roperch, P., and Levi, S., 2005. Reliability of geomagnetic paleointensity data: the effects of the NRM fraction and concave‐up behavior on paleointensity determinations by the Thellier method. Physics of the Earth and Planetary Interiors, 150(4): 265–286, doi:10.1016/j.pepi.2004.11.008.CrossRefGoogle Scholar
  9. Collinson, D.W., 1967. Chemical demagnetization. In Creer, K.M., and Runcorn, S.K. (eds.) Methods in Paleomagnetism. Amsterdam: Elsevier, pp. 306–310.Google Scholar
  10. Collinson, D.W., 1974. The role of pigment and specularite in the remanent magnetism of red sandstone. Journal of the Royal Astronomical Society, 38: 253–264.Google Scholar
  11. Donovan, T.J., Forgey, R.L., and Roberts, A.A., 1979. Aeromagnetic detection of diagenetic magnetite over oil fields. American Association of Petroleum Geologists Bulletin, 63: 245–248.Google Scholar
  12. Elmore, R.D., Dunn, W., and Peck, C., 1985. Absolute dating of a diagenetic event using paleomagnetic analysis. Geology, 13: 558–561.CrossRefGoogle Scholar
  13. Garrels, R.M., and Christ, C.L., 1965. Solutions, Minerals and Equilibria. New York: Harper & Row, 450 pp.Google Scholar
  14. Haigh, G., 1958. The process of magnetization by chemical change. Philosophical Magazine, 3: 267–286.CrossRefGoogle Scholar
  15. Hornafius, J.S., 1984. Origin of remanent magnetization in dolomite from the Monterey Formation. In Garrison, R.E., Kastner, M., and Zenger, K.H. (eds.), Dolomites of the Monterey Formation and Other Organic‐Rich Units. Society of Economic Paleontologists and Mineralogists pp. 195–212. Pacific Section Publication No. 41.Google Scholar
  16. Johnson, H.P., and Merrill, R.T., 1973. Low‐temperature oxidation of a titanomagnetite and the implication for paleomagnetism. Journal of Geophysical Research, 78: 4938–4949.Google Scholar
  17. Johnson, H.P., and Pariso, J.E., 1993. Variations in oceanic crustal magnetization: systematic changes in the last 160 million years. Journal of Geophysical Research, 98: 435–445.Google Scholar
  18. Karlin, R., 1990. Magnetic mineral diagenesis in suboxic sediments at Bettis site W‐N, NE Pacific Ocean. Journal of Geophysical Research, 95: 4421–4436.Google Scholar
  19. Karlin, R., and Levi, S., 1983. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature, 303: 327–330.CrossRefGoogle Scholar
  20. Karlin, R., and Levi, S., 1985. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. Journal of Geophysical Research, 90: 10 373–10 392.Google Scholar
  21. Karlin, R., Lyle, M., and Heath, G.R., 1987. Authigenic magnetite formation in suboxic marine sediments. Nature, 326: 490–493.CrossRefGoogle Scholar
  22. Klitgord, K.D., 1976. Sea‐floor spreading: the central anomaly magnetization high. Earth and Planetary Science Letters, 29: 201–209.CrossRefGoogle Scholar
  23. Kobayashi, K., 1959. Chemical remanent magnetization of ferromagnetic minerals and its application to rock magnetism. Journal of Geomagnetism and Geoelectricity, 10: 99–117.Google Scholar
  24. Kobayashi, K., 1961. An experimental demonstration of the production of chemical remanent magnetization with Cu‐Co alloy. Journal of Geomagnetism and Geoelectricity, 12: 148–164.Google Scholar
  25. Koenigsberger, J.G., 1938. Natural residual magnetism of eruptive rocks. Terrestrial Magnetism and Atmospheric Electricity, 43, 119–130, part 1: part 2: 299–320.Google Scholar
  26. Larson, E.E., 1981. Selective destructive demagnetization, another microanalytic technique in rock magnetism. Geology, 9: 350–355.CrossRefGoogle Scholar
  27. Larson, E.E., and Walker, T.R., 1975. Development of CRM during early stages of red bed formation in late Cenozoic sediments, Baja, California, Geological Society of America Bulletin, 86: 639–650.CrossRefGoogle Scholar
  28. Levi, S., 1989. Chemical remanent magnetization. In James, D.E. (ed.) The Encyclopedia of Solid Earth Geophysics. London, UK: Van Nostrand Reinhold Ltd., pp. 49–58.Google Scholar
  29. Marshall, M., and Cox, A., 1971. Effect of oxidation on the natural remanent magnetization of titanomagnetite in suboceanic basalt. Nature, 230: 28–31.CrossRefGoogle Scholar
  30. Maurain, Ch. 1901. Propriétés des dépots électolytiques de fer obtenus dans un champ magnétique. Journal of Physique, 3(10): 123–135.Google Scholar
  31. Maurain, Ch. 1902. Sur les propriétés magnétiques de lames trés minces de fer et de nickel. Journal of Physique, 4(1): 90–151.Google Scholar
  32. McCabe, C., and Elmore, R.D., 1989. The occurrence and origin of late Paleozoic remagnetization in the sedimentary rocks of North America. Reviews of Geophysics, 27: 471–494.Google Scholar
  33. McCabe, C., Van der Voo, R., Peacor, D.R., Soctese, R., and Freeman, R., 1983. Diagenetic magnetite carries ancient yet secondary remanence in some Paleozoic sedimentary carbonates. Geology, 11: 221–223.CrossRefGoogle Scholar
  34. McCabe, C., Sassen, R., and Saffer, B., 1987. Occurrence of secondary magnetite within biodegraded oil. Geology, 15: 7–10.CrossRefGoogle Scholar
  35. Meiklejohn, W.H., 1953. Experimental study of coercive force of fine particles. Reviews of Modern Physics, 25: 302–306.CrossRefGoogle Scholar
  36. Néel, L., 1949. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales de Géophysique, 5: 99–136.Google Scholar
  37. Néel, L., 1955. Some theoretical aspects of rock magnetism. Advances in Physics, 4: 191–243.CrossRefGoogle Scholar
  38. Özdemir, Ö., and Dunlop, D.J., 1985. An experimental study of chemical remanent magnetizations of synthetic monodomain titanomaghemites with initial thermoremanent magnetizations. Journal of Geophysical Research, 90: 11513–11523.Google Scholar
  39. Readman, P.W., and O'Reilly, W., 1972. Magnetic properties of oxidized (cation deficient) titanomagnetites. Journal of Geomagnetism and Geoelectricity, 24: 69–90.Google Scholar
  40. Reynolds, R.L., Rosenbaum, J.G., van Metre, P., Tuttle, M., Callender, E., and Goldin Alan 1999. Greigite (Fe3S4) as an indicator of drought—the 1912–1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA. Journal of Paleolimnology, 21: 193–206.CrossRefGoogle Scholar
  41. Roberts, A.P., and Turner, G.M., 1993. Diagenetic formation of ferromagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters, 115: 257–273.CrossRefGoogle Scholar
  42. Roberts, A.P., and Weaver, R., 2005. Multiple mechanisms of remagnetization involving sedimentary greigite Fe3S4. Earth and Planetary Science Letters, 231(3–4): 263–277, doi:10.1016/j.epsl.2004.11.024.CrossRefGoogle Scholar
  43. Sagnotti, S., Roberts, A.P., Weaver, R., Verosub, K.L., Florindo, F., Pike, C.R., Clayton, T., and Wilson, G.S., 2005. Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophysical Journal International, 160: 89–100.CrossRefGoogle Scholar
  44. Suk, D., Van der Voo, R., and Peacor, D.R., 1993. Origin of magnetite responsible for remagnetization of early Paleozoic limestones of New York State. Journal of Geophysical Research, 98: 419–434.Google Scholar
  45. Thellier, E., and Thellier, O., 1959. Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Géophysique, 15: 285–376.Google Scholar
  46. Weaver, R., Roberts, A.P., and Barker, A.J., 2002. A late diagenetic (syn‐folding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide‐bearing sediments. Earth and Planetary Science Letters, 200: 371–386.CrossRefGoogle Scholar
  47. Yamamoto, Y, Tsunakawa, H., and Shibuya, H., 2003. Palaeointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities. Geophysical Journal International, 153: 263–276.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shaul Levi

There are no affiliations available