Skip to main content

Magnetization, Anhysteretic Remanent

  • Reference work entry
Encyclopedia of Geomagnetism and Paleomagnetism

Anhysteretic remanent magnetization (ARM) is a magnetization an assemblage of magnetic particles acquires when it is subjected to an alternating field (AF) of gradually decreasing amplitude (H AF) with a constant decrement (ΔH AF/cycle) simultaneously with a steady, unidirectional DC field (H DC). The ARM is measured when both AF and DC fields are zero. Typically, the DC field is maintained while the AF is slowly ramped down to zero, and then reduced to zero. For isotropic samples, the direction of the ARM is parallel to H DC but the intensity will depend on the amplitudes and relative orientations of the AF and DC fields. The maximum ARM intensity occurs when H AF and H DC are parallel. For a standard laboratory experiment, H DCH AF with H AF = 100–200 mT and H DC = 0.05–0.1 mT. H DC is also referred to as a bias field because it produces a statistical preference or biases the direction of ARM along H DC. A special case of ARM is a partial ARM (pARM) produced by a DC field applied...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Banerjee, S.K., and Mellama, J.P., 1974. A new method for the determination of paleointensity from ARM properties of rocks. Earth and Planetary Science Letters, 23: 177–184.

    Article  Google Scholar 

  • Banerjee, S.K., King, J.W., and Marvin, J.M., 1981. A rapid method for magnetic granulometry with applications to environmental studies. Geophysical Research Letters, 8: 333–336.

    Google Scholar 

  • Collinson, D.W., 1983. Methods in Rock Magnetism and Paleomagnetism: Techniques and Instrumentation. New York: Chapman & Hall.

    Google Scholar 

  • Dunlop, D.J., and West, G., 1969. An experimental evaluation of single‐domain theories. Reviews of Geophysics, 7: 709–757.

    Google Scholar 

  • Dunlop, D.J., and Argyle, K.S., 1997. Thermoremanence, anhysteretic remanence and susceptibility of submicron magnetites: nonlinear field dependence and variation with grain size. Journal of Geophysical Research, 102: 20199–20210.

    Google Scholar 

  • Dunlop, D.J., and Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. New York: Cambridge University Press.

    Google Scholar 

  • Egli, R., and Lowrie, W., 2002. Anhysteretic remanent magnetization of fine magnetic particles. Journal of Geophysical Research, 107(B10): 2209, doi:10.1029/2001JB0000671.

    Article  Google Scholar 

  • Gillingham, E.W., and Stacey, F.D., 1971. Anhysteretic remanent magnetization (ARM) in magnetite Grains. Pure and Applied Geophysics, 91: 160–165.

    Article  Google Scholar 

  • Jackson, M.J., 1991. Anisotropy of magnetic remanence: a brief review of mineralogical sources, physical, origins, and applications and comparisons with susceptibility anisotropy. Pure and Applied Geophysics, 136: 1–28.

    Article  Google Scholar 

  • Jackson, M.J., Gruber, W., Marvin, J., and Banerjee, S.K., 1988. Partial anhysteretic remanence and its anisotropy: applications and grain size dependence. Geophysical Research Letters, 15: 440–443.

    Google Scholar 

  • Jackson, M.J., Banerjee, S.K., Marvin, J.A., Lu, R., and Gruber, W., 1991. Detrital remanence inclination errors and anhysteretic remanence anisotropy: quantitative model and experimental results. Geophysical Journal International, 104: 95–193.

    Article  Google Scholar 

  • Jeap, W.F., 1971. Role of interactions in magnetic tapes. Journal of Applied Physics, 42: 2790–2794.

    Article  Google Scholar 

  • Johnson, H.P., Lowrie, W., and Kent, D., 1975a. Stability of anhysteretic remanent magnetization in fine and coarse magnetite and maghemite particles. Geophysical Journal of the Royal Astronomical Society, 41: 1–10.

    Google Scholar 

  • Johnson, H.P., Kinoshita, H., and Merrill, 1975b. Rock magnetism and paleomagnetism of some North‐Pacific deep sea sediments. Geological Society of America Bulletin, 86: 412–420.

    Article  Google Scholar 

  • King, J.W., Banerjee, S.K., and Marvin, J., 1983. A new rock‐magnetic approach to selecting samples for geomagnetic paleointensity studies: applications to paleointensity for the last 4000 years. Journal of Geophysical Research, 88: 5911–5921.

    Google Scholar 

  • Kono, M., 1978. Reliability of paleointensity methods using alternating field demagnetization and anhysteretic remanence. Geophysical Journal of the Royal Astronomical Society, 54: 241.

    Google Scholar 

  • Levi, S., and Banerjee, S.K., 1976. On the possibility of obtaining relative paleointensities from lake sediments. Earth and Planetary Science Letters, 29: 219–226.

    Article  Google Scholar 

  • Levi, S., and Merrill, R.T., 1976. A comparison of ARM and TRM in magnetite. Earth and Planetary Science Letters, 32: 171–184.

    Article  Google Scholar 

  • Maher, B.A., 1988. Magnetic properties of some synthetic submicron magnetites. Geophysical Journal of the Royal Astronomical Society, 94: 83–96.

    Google Scholar 

  • McCabe, C., Jackson, M.J., and Ellwood, B.B., 1985. Magnetic anisotropy in the Trenton limestone: results of a new technique, anisotropy of anhysteretic susceptibility. Geophysical Research Letters, 12: 333–336.

    Google Scholar 

  • Oldfield, F., 1994. Toward the discrimination of fine grained ferrimagnets by magnetic measurements in lake and near‐shore marine sediments. Journal of Geophysical Research, 99: 9045–9050.

    Article  Google Scholar 

  • Rimbert, F., 1959. Contribution À L'étude De L'action De Champs Alternatifs Sur Les Aimantations Rémanentes Des Roches: Applications Géophysiques. Revue de l'Institut Francais du Petrole, 14: 17–54.

    Google Scholar 

  • Rolph, T.C., and Shaw, J., 1985. A new method of paleofield magnitude correction for the thermally altered samples and its applications to Lower Carboniferous lavas. Geophysical Journal of the Royal Astronomical Society, 80: 773–781.

    Google Scholar 

  • Shaw, J., 1974. A new method of determining the magnitude of the palaeomagnetic field: application to five historic lavas and five archaeological samples. Geophysical Journal of the Royal Astronomical Society, 39: 133–141.

    Google Scholar 

  • Sugiura, N., 1979. ARM, TRM and magnetic interactions: concentration dependence. Earth and Planetary Science Letters, 42: 451–455.

    Article  Google Scholar 

  • Tarling, D.H., and Hrouda, F., 1993. London: The Magnetic Anisotropy of Rocks, Chapman and Hall.

    Google Scholar 

  • Tauxe, L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Reviews of Geophysics, 31: 319–354.

    Article  Google Scholar 

  • Tauxe, L., 1998. Paleomagnetic Principles and Practice. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Tauxe, L., Pick, T., and Kok, Y.S., 1995. Relative paleointensity in sediments: a pseudo Thellier approach. Geophysical Research Letters, 22: 2885–2888.

    Article  Google Scholar 

  • Valet, J‐P., 2003. Time variations in geomagnetic intensity. Reviews of Geophysics, 41(1): 1004, doi:10.1029/2001RG000104.

    Article  Google Scholar 

  • Walton, D., 1990. A theory of anhysteretic remanent magnetization of single domain grains. Journal of Magnetism and Magnetic Materials, 87: 369–374.

    Article  Google Scholar 

  • Wohlfarth, E.P., 1964. A review of the problem of fine‐particle interactions with special reference to magnetic recording. Journal of Applied Physics, 35: 783–790.

    Article  Google Scholar 

  • Yu, Y., Dunlop, D.J., and Özdemir, Ö., 2002a. Partial anhysteretic remanent magnetization in magnetite: 1. Additivity. Journal of Geophysical Research, 107, 10.1029/2001JB001249.

    Google Scholar 

  • Yu, Y., Dunlop, D.J., and Özdemir, Ö., 2002b. Partial anhysteretic remanent magnetization in magnetite: 2. Reciprocity. Journal of Geophysical Research, 107, 10.1029/2001JB001269.

    Google Scholar 

  • Yu, Y., Dunlop, D.J., and Özdemir, Ö., 2003. Testing the independence law of partial ARMs: implications for paleointensity determination. Earth and Planetary Science Letters, 208: 27–39.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Moskowitz, B.M. (2007). Magnetization, Anhysteretic Remanent. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_189

Download citation

Publish with us

Policies and ethics