Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Magnetic Susceptibility (MS), Low‐Field

  • Brooks B. Ellwood
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_188

All mineral grains are “susceptible” to become magnetized in the presence of a magnetic field, and MS is an indicator of the strength of this transient magnetism within a material sample. MS is very different from remanent magnetism (RM), the magnetization that accounts for the magnetic polarity of materials. MS in sediments is generally considered to be an indicator of iron, ferromagnesian or clay mineral concentration, and can be quickly and easily measured on small samples. In the very‐low‐inducing magnetic fields that are generally applied, MS is largely a function of the composition, concentration, grain size, and morphology of the magnetizable material in a sample. It is also somewhat variable in direction (MS has anisotropy) according to magnetocrystalline anisotropy, mineral distributions, and grain morphology. MS has the advantage of being quickly and easily measured on small, friable, unoriented samples using commercially available devices such as balanced coil induction...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Crick, R.E., Ellwood, B.B., El Hassani, A., Feist, R., and Hladil, J., 1997. Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian‐Givetian GSSP and associated boundary sequences in North Africa and Europe. Episodes, 20: 167–175.Google Scholar
  2. Crick, R.E., Ellwood, B.B., El Hassani, A., Hladil, J., Hrouda, F., and Chlupac, I., 2001. Magnetostratigraphy susceptibility of the Pridoli‐Lochkovian (Silurian‐Devonian) GSSP (Klonk, Czech Republic) and a Coeval sequence in Anti‐Atlas Morocco. Palaeogeography Palaeoclimatology Palaeoecology, 167: 73–100.CrossRefGoogle Scholar
  3. da Silva, A.‐C., and Boulvain, F., 2002. Sedimentology, magnetic susceptibility and isotopes of a Middle Frasnian carbonate platform: Tailfer section, Belgium. Facies, 46: 89–101.Google Scholar
  4. Dinares‐Turell, J., Baceta, J.I., Pujalte, V., Orue‐Etxebarria, X., Bernaola, G., and Lorito, S., 2003. Untangling the Palaeocene climatic rhythm: as astronomically calibrated Early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, northern Spain). Earth and Planetary Science Letters, 216: 483–500.CrossRefGoogle Scholar
  5. Ellwood, B.B., and Ledbetter, M.T., 1977. Antarctic bottom water fluctuation in the Vema Channel: effects of velocity changes on particle alignment and size. Earth and Planetary Science Letters, 35: 189–198.CrossRefGoogle Scholar
  6. Ellwood, B.B., Petruso, K.M., and Harrold, F.B., 1996. The utility of magnetic susceptibility for detecting paleoclimatic trends and as a stratigraphic correlation tool: an example from Konispol cave sediments, SW Albania. Journal of Field Archaeology, 23: 263–271.CrossRefGoogle Scholar
  7. Ellwood, B.B., Crick, R.E., and El Hassani, A., 1999. The magnetosusceptibility event and cyclostratigraphy (MSEC) method used in geological correlation of Devonian rocks from Anti‐Atlas Morocco. AAPG Bulletin, 83: 1119–1134.Google Scholar
  8. Ellwood, B.B., Crick, R.E., El Hassani, A., Benoist, S., and Young, R., 2000. Magnetosusceptibility event and cyclostratigraphy (MSEC) in marine rocks and the question of detrital input versus carbonate productivity. Geology, 28: 1135–1138.CrossRefGoogle Scholar
  9. Ellwood, B.B., Crick, R.E., Garcia‐Alcalde Fernandez, J.L., Soto, F.M., Truyols‐Massoni, M., El Hassani, A., and Kovas, E.J., 2001a. Global correlation using magnetic susceptibility data from Lower Devonian rocks. Geology, 29: 583–586.CrossRefGoogle Scholar
  10. Ellwood, B.B., Harrold, F.B., Benoist, S.L., Straus, L.G., Gonzalez‐ Morales, M., Petruso, K., Bicho, N.F., Zilhão, Z., and Soler, N., 2001b. Paleoclimate and intersite correlations from Late Pleistocene/Holocene cave sites: results from Southern Europe. Geoarchaeology, 16: 433–463.CrossRefGoogle Scholar
  11. Ellwood, B.B., MacDonald, W.D., Wheeler, C., and Benoist, S.L., 2003. The K-T Boundary in Oman: Identified Using Magnetic Susceptibility Field Measurements with Geochemical Confirmation. Earth Planetary Science Letters, 206: 529–540.Google Scholar
  12. Ellwood, B.B., Harrold, F.B., Benoist, S.L., Thacker, P., Otte, M., Bonjean, D., Long, G.L., Shahin, A.M., Hermann, R.P., and Grandjean, F., 2004. Magnetic susceptibility applied as an age‐depth‐climate relative dating technique using sediments from Scladina Cave, a Late Pleistocene cave site in Belgium. Journal of Archaeological Science, 31: 283–293.CrossRefGoogle Scholar
  13. Ellwood, B.B., Kafafy, A., Kassab, A., Tomkin, J.H., Abdeldayem, A., Obaidalla, N., Willson, K., and Thompson, D.E., 2007. Magnetostratigraphy susceptibility used for high resolution correlation among Paleocene/Eocene boundary sequences in Egypt, Spain and the USA. SEPM Special Publication, in press.Google Scholar
  14. Evans, M.E., and Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. San Diego, CA: Academic Press, p. 299.Google Scholar
  15. Hansen, H.J., Lojen, S., Toft, P., Dolenec, T., Yong, J., Michaelsen, P., and Sarkar, A., 1999. Magnetic susceptibility of sediments across some marine and terrestrial Permo‐Triassic boundaries. In Proceedings of the International Conference on Pangea and the Paleozoic‐Mesozoic Transition, March 9–11, 1999. Hubei, China, China University of Geosciences, pp. 114–115.Google Scholar
  16. Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the Marine Delta 18O record. In Berger, A.L., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. (eds.), Milankovitch and Climate, Part I. Boston, MA: Reidel, pp. 269–305.Google Scholar
  17. Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, T.C., and Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: development of a high‐resolution 0 to 300000‐year chronostratigraphy. Quaternary Research, 27: 1–29.CrossRefGoogle Scholar
  18. Otte, M., Toussaint, M., and D., Bonjean 1993. Découverte de restes humains immatures dans les niveaux moustériens de la grotte Scladina à Andenne (Belgique). Bulletin Mémoires de la Société d'Anthropologie de Paris, 5: 327–332.Google Scholar
  19. Otte, M., Patou‐Mathis, M., and Bonjean D. (eds.), 1998. Recherches aux grottes de Sclayn, Volume 2, L'Archéologie. Liège, ERAUL 79, Service de Préhistoire, Université de Siége.Google Scholar
  20. Sachs, S.D., and Ellwood, B.B., 1988. Controls on magnetic grain‐size variations and concentrations in the Argentine Basin, South Atlantic Ocean. Deep Sea Research, 35: 929–942.CrossRefGoogle Scholar
  21. Shaw, A.B., 1964. Time in Stratigraphy. New York: McGraw‐Hill, 365 pp.Google Scholar
  22. Thoa, N.T.K., Huyen, D.T., Ellwood, B.B., Lan, L.T.P., and Truong, D.N., 2004. Determination of Permian‐Triassic boundary in limestone formations from Northeast of Vietnam by paleontological and MSEC methods. Journal of Sciences of the Earth, 26: 222–232.Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Brooks B. Ellwood

There are no affiliations available