Skip to main content

Magnetic Susceptibility, Anisotropy

  • Reference work entry
Encyclopedia of Geomagnetism and Paleomagnetism

Introduction

The preferred orientation of minerals is typical of almost all rock types. In some rocks, for example, metamorphic mica‐schist, it is very strong and visible to the naked eye, while in others, like basalt and massive granite, it is very weak and detectable only by sensitive instruments. It develops during various geological processes, such as by water flow in sediments, by lava or magma flow in volcanic and plutonic rocks, or by ductile deformation in metamorphic rocks, and in turn, these processes can be assessed from it. The preferred orientation of rock‐forming minerals has been measured in thin sections using microscope and universal stage analysis since the beginning of the 20th century, while today, more sophisticated techniques have been developed (e.g., X‐ray pole figure goniometry, neutron pole figure goniometry, and electron backscatter diffractography).

Magnetic minerals, mostly occurring in rocks in accessory amounts, show preferred orientation. This...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Banerjee, S.K., and Stacey, F.D., 1967. The high‐field torque‐meter method of measuring magnetic anisotropy of rocks. In Collinson, D.W., Creer, K.M., and Runcorn, S.K. (eds.) Methods in Paleomagnetism. Amsterdam: Elsevier, pp. 470–476.

    Google Scholar 

  • Borradaile, G.J., 1991. Correlation of strain with anisotropy of magnetic susceptibility (AMS). PAGEOPH, 135: 15–29.

    Article  Google Scholar 

  • Borradaile, G.J., 2001. Magnetic fabrics and petrofabrics: their orientation distribution and anisotropies. Journal of Structural Geology, 23: 1581–1596.

    Article  Google Scholar 

  • Borradaile, G., and Alford, C., 1987. Relationship between magnetic susceptibility and strain in laboratory experiments. Tectonophysics, 133: 121–135.

    Article  Google Scholar 

  • Borradaile, G.J., and Alford, C., 1988. Experimental shear zones and magnetic fabrics. Journal of Structural Geology, 10: 895–904.

    Article  Google Scholar 

  • Borradaile, G.J., and Henry, B., 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth‐Science Reviews, 42: 49–93.

    Article  Google Scholar 

  • Borradaile, G.J., and Mothersill, J.S., 1984. Coaxial deformed and magnetic fabrics without simply correlated magnitudes of principal values. Physics of the Earth and Planetary Interiors, 35: 294–300.

    Article  Google Scholar 

  • Borradaile, G.J., and Tarling, D., 1984. Strain partitioning and magnetic fabrics in particulate flow. Canadian Journal of Earth Sciences, 21: 694–697.

    Google Scholar 

  • Bouchez, J.‐L., 2000. Anisotropie de susceptibilitée magnétique et fabrique des granites. Comptes Rendus Académie des Sciences Paris, Sciences de la Terre et des planétes, 330: 1–14.

    Article  Google Scholar 

  • Bouchez, J.‐L., Hutton, D.W.H., and Stephens, W.E. (eds.), 1997. Granite: From Segregation of Melt to Emplacement Fabric. Dordrecht: Kluwer Academic Publishers, 358 pp.

    Google Scholar 

  • Canon‐Tapia, E., Walker, G.P.L., and Herrero‐Bervera, E., 1994. Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle Volcano, Mexico. Journal of Volcanology and Geothermal Research, 65: 249–263.

    Article  Google Scholar 

  • Chadima, M., Hansen, A., Hirt, A.M., Hrouda, F., and Siemes, H., 2004. Phyllosilicate preferred orientation as a control of magnetic fabric: evidence from neutron texture goniometry and low and high‐field magnetic anisotropy (SE Rhenohercynian Zone of Bohemian Massif  ). In: Martín-Hernández, F., Lüneburg, C.M., Aubourg, C., and Jackson, M. (eds.). Magnetic Fabric: Methods and Applications. Geological Society, London, Special Publications, 238: 361–380.

    Google Scholar 

  • Constable, C., and Tauxe, L., 1990. The bootstrap for magnetic susceptibility tensors. Journal of Geophysical Research, 95: 8383–8395.

    Google Scholar 

  • de Wall, H., 2000. The field dependence of AC susceptibility in titanomagnetites: implications for the anisotropy of magnetic susceptibility. Geophysical Research Letters, 27: 2409–2411.

    Article  Google Scholar 

  • Dortman, N.B. (ed.), 1984. Physical Properties of Rocks and Mineral Deposits (in Russian). Moscow: Nedra, 455 pp.

    Google Scholar 

  • Ellwood, B.B., and Whitney, J.A., 1980. Magnetic fabric of the Elberton granite, Northeast Georgia. Journal of Geophysical Research, 85: 1481–1486.

    Google Scholar 

  • Ernst, R.E., and Baragar, W.R.A., 1992. Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, 356: 511–513.

    Article  Google Scholar 

  • Ernst, R.E., and Pearce, G.W., 1989. Averaging of anisotropy of magnetic susceptibility data. In Agterberg, F.P., and Bonham‐Carter, G.F. (eds.), Statistical Applications in the Earth Sciences, Geological Survey of Canada Paper 89‐9, pp. 297–305.

    Google Scholar 

  • Hamilton, N., and Rees, A.I., 1970. The use of magnetic fabric in palaeocurrent estimation. In Runcorn, S.K. (ed.) Palaeogeophysics. London: Academic Press, pp. 445–463.

    Google Scholar 

  • Henry, B., 1977. Relations entre deformations et propriétés magnétiques dans des roches volcaniques des Alpes francaises. Mémoires du B.R.G.M. 91: 79–86.

    Google Scholar 

  • Henry, B., Jordanova, D., Jordanova, N., Souque, C., and Robion, P., 2003. Anisotropy of magnetic susceptibility of heated rocks. Tectonophysics, 366: 241–258.

    Article  Google Scholar 

  • Hrouda, F., 1978. The magnetic fabric in some folds. Physics of the Earth and Planetary Interiors, 17: 89–97.

    Article  Google Scholar 

  • Hrouda, F., 1980. Magnetocrystalline anisotropy of rocks and massive ores: a mathematical model study and its fabric implications. Journal of Structural Geology, 2: 459–462.

    Article  Google Scholar 

  • Hrouda, F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5: 37–82.

    Article  Google Scholar 

  • Hrouda, F., 1991. Models of magnetic anisotropy variation in sedimentary sheets. Tectonophysics, 186: 203–210.

    Article  Google Scholar 

  • Hrouda, F., 1993. Theoretical models of magnetic anisotropy to strain relationship revisited. Physics of the Earth and Planetary Interiors, 77: 237–249.

    Article  Google Scholar 

  • Hrouda, F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS‐2 apparatus and KLY‐2 Kappabridge. Geophysical Journal International, 118: 604–612.

    Article  Google Scholar 

  • Hrouda, F., 2002. Low‐field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks. Geophysical Journal International, 150: 715–723.

    Article  Google Scholar 

  • Hrouda, F., and Ježek, J., 1999. Magnetic anisotropy indications of deformations associated with diagenesis. In Tarling, D.H., and Turner, P. (eds.), Palaeomagnetism and Diagenesis in Sediments. London: Geological Society, Special Publications 151, pp. 127–137.

    Google Scholar 

  • Hrouda, F., and Kahan, S., 1991. The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mts. (N Slovakia). Journal of Structural Geology, 13: 431–442.

    Article  Google Scholar 

  • Hrouda, F., and Schulmann, K., 1990. Conversion of magnetic susceptibility tensor into orientation tensor in some rocks. Physics of the Earth and Planetary Interiors, 63: 71–77.

    Article  Google Scholar 

  • Hrouda, F., Chlupacova, M., and Rejl, L., 1971. The mimetic fabric of magnetite in some foliated granodiorites, as indicated by magnetic anisotropy. Earth Science and Planetary Interiors, 11: 381–384.

    Article  Google Scholar 

  • Hrouda, F., Siemes, H., Herres, N., and Hennig‐Michaeli, C., 1985. The relation between the magnetic anisotropy and the c‐axis fabric in a massive hematite ore. Journal of Geophysics, 56: 174–182.

    Google Scholar 

  • Hrouda, F., Jelínek, V., and Zapletal, K., 1997. Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature‐variation measurement. Geophysical Journal International, 129: 715–719.

    Article  Google Scholar 

  • Hrouda, F., Krejčí, O., and Otava, J., 2000. Magnetic fabric in folds of the Eastern Rheno‐Hercynian Zone. Physics and Chemistry of the Earth (A), 25: 505–510.

    Article  Google Scholar 

  • Hrouda, F., Chlupáčová, M., and Novák, J.K., 2002a. Variations in magnetic anisotropy and opaque mineralogy along a kilometer deep profile within a vertical dyke of the syenogranite porphyry at Cínovec (Czech Republic). Journal of Volcanology and Geothermal Research, 113: 37–47.

    Article  Google Scholar 

  • Hrouda, F., Putiš, M., and Madarás, J., 2002b. The Alpine overprints of the magnetic fabrics in the basement and cover rocks of the Veporic Unit (Western Carpathians, Slovakia). Tectonophysics, 359: 271–288.

    Article  Google Scholar 

  • Jelínek, V., 1977. The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Geofyzika, n.p. Brno, 88 pp.

    Google Scholar 

  • Jelinek, V., 1978. Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, 22: 50–62.

    Article  Google Scholar 

  • Ježek, J., and Hrouda, F., 2000. The relationship between the Lisle orientation tensor and the susceptibility tensor. Physics and Chemistry of the Earth (A), 25: 469–474.

    Article  Google Scholar 

  • Kolofikova, O., 1976. Geological interpretation of measurement of magnetic properties of basalts on example of the Chribsky les lava flow of the Velky Roudny volcano (Nizky Jesenik Mts.) (in Czech). Časopis pro mineralogii a geologii, 21: 387–396.

    Google Scholar 

  • Kneen, S.J., 1976. The relationship between the magnetic and strain fabrics of some haematite‐bearing Welsh slates. Earth and Planetary Science Letters, 31: 413–416.

    Article  Google Scholar 

  • Lowrie, W., and Hirt, A.M., 1987. Anisotropy of magnetic susceptibility in the Scaglia Rossa pelagic limestone. Earth and Planetary Science Letters, 82: 349–356.

    Article  Google Scholar 

  • Lüneburg, C.M., Lampert, S.A., Lebit, H.D., Hirt, A.M., Casey, M., and Lowrie, W., 1999. Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics, 307: 51–74.

    Article  Google Scholar 

  • MacDonald, W.D., and Palmer, H.C., 1990. Flow directions in ash‐flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff  ), Valles caldera, New Mexico, USA. Bulletin of Volcanology, 53: 45–59.

    Article  Google Scholar 

  • Nagata, T., 1961. Rock Magnetism. Tokyo: Maruzen.

    Google Scholar 

  • Nye, J.F., 1957. Physical Properties of Crystals. Oxford: Clarendon Press.

    Google Scholar 

  • Owens, W.H., 1974. Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics, 24: 115–131.

    Article  Google Scholar 

  • Owens, W.H., and Rutter, E.H., 1978. The development of magnetic susceptibility anisotropy through crystallographic preferred orientation in a calcite rock. Physics of the Earth and Planetary Interiors, 16: 215–222.

    Article  Google Scholar 

  • Pares, J.M., van der Pluijm, B.A., and Dinares‐Turell, J., 1999. Evolution of magnetic fabrics during incipient deformation of mudrock (Pyrenees, northern Spain). Tectonophysics, 307: 1–14.

    Article  Google Scholar 

  • Park, J.K., Tanczyk, E.I., and Desbarats, A., 1988. Magnetic fabric and its significance in the 1400 Ma Mealy diabase dykes of Labrador, Canada. Journal of Geophysical Research, 93: 13 689–13 704.

    Google Scholar 

  • von Rad, U., 1971. Comparison between “magnetic” and sedimentary fabric in graded and cross‐laminated sand layers, Southern California. Geologische Rundschau, 60: 331–354.

    Google Scholar 

  • Raposo, M.I.B., and Ernesto, M., 1995. Anisotropy of magnetic susceptibility in the Ponta Grossa dyke swarm (Brazil) and its relationship with magma flow direction. Physics of the Earth and Planetary Interiors, 87: 183–196.

    Article  Google Scholar 

  • Rathore, J.S., and Becke, M., 1980. Magnetic fabric analyses in the Gail Valley (Carinthia, Austria) for the determination of the sense of movements along this region of the Periadriatic Line. Tectonophysics, 69: 349–368.

    Article  Google Scholar 

  • Rees, A.I., 1983. Experiments on the production of transverse grain alignment in a sheared dispersion. Sedimentology, 30: 437–448.

    Article  Google Scholar 

  • Rees, A.I., and Woodall, W.A., 1975. The magnetic fabric of some laboratory‐deposited sediments. Earth and Planetary Science Letters, 25: 121–130.

    Article  Google Scholar 

  • Richter, C., and van der Pluijm, B.A., 1994. Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Physics of the Earth and Planetary Interiors, 82: 111–121.

    Article  Google Scholar 

  • Scheidegger, A.E., 1965. On the statistics of the orientation of bedding planes, grain axes, and similar sedimentological data. US Geological Survey Professional Paper, 525‐C: 164–167.

    Google Scholar 

  • Siegesmund, S., Ullemeyer, K., and Dahms, M., 1995. Control of magnetic rock fabrics by mica preferred orientation: a quantitative approach. Journal of Structural Geology, 17: 1601–1613.

    Article  Google Scholar 

  • Taira, A., 1989. Magnetic fabrics and depositional processes. In Taira, A., and Masuda, F., (eds.), Sedimentary Facies in the Active Plate Margin. Tokyo: Terra Publications, pp. 43–77.

    Google Scholar 

  • Tarling, D.H., and Hrouda, F., 1993. The magnetic anisotropy of rocks. London: Chapman & Hall, 217 pp.

    Google Scholar 

  • Urrutia‐Fucugauchi, J., 1981. Preliminary results on the effects of heating on the magnetic susceptibility anisotropy of rocks. Journal of Geomagnetism and Geoelectricity, 33: 411–419.

    Google Scholar 

  • Uyeda, S., Fuller, M.D., Belshe, J.C., and Girdler, R.W., 1963. Anisotropy of magnetic susceptibility of rocks and minerals. Journal of Geophysical Research, 68: 279–292.

    Google Scholar 

  • Wood, D.S., Oertel, G., Singh, J., and Bennet, H.G., 1976. Strain and anisotropy in rocks. Philosophical Transactions of the Royal Society of London, Series A, 283: 27–42.

    Article  Google Scholar 

  • Woodcock, N.H., 1977. Specification of fabric shapes using an eigenvalue method. Geological Society of America Bulletin, 88: 1231–1236.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Hrouda, F. (2007). Magnetic Susceptibility, Anisotropy. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_185

Download citation

Publish with us

Policies and ethics