Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Magnetic Properties, Low‐Temperature

  • Andrei Kosterov
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_180

Introduction

Use of magnetic measurements at cryogenic temperatures for characterizing magnetic mineralogy of rocks was initiated in the early 1960s, when it was realized that several minerals capable to carry natural remanent magnetization (NRM), e.g., magnetite and hematite, show distinctive magnetic phase transitions below room temperature. In the last decade, low‐temperature magnetometry of rocks and minerals has seen a new boost due to increasing availability of commercial systems capable to carry out magnetic measurements down to and below 4.2 K. Low‐temperature magnetometry has the potential to complement conventional high‐temperature methods of magnetic mineralogy while offering an advantage of avoiding chemical alteration due to heating. This is especially important in the case of sedimentary rocks, which alter much more readily upon heating. However, additional complications may arise because of a possible presence in a rock of mineral phases showing ferrimagnetic or...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Amin, N., and Arajs, S., 1987. Morin temperature of annealed submicronic α‐Fe2O3 particles. Physical Review B, 35: 4810–4811.CrossRefGoogle Scholar
  2. Aragón, R., 1992. Magnetization and exchange in nonstoichiometric magnetite. Physical Review B, 46: 5328–5333.CrossRefGoogle Scholar
  3. Aragón, R., Buttrey, D.J., Shepherd, J.P., and Honig, J.M., 1985. Influence of nonstoichiometry on the Verwey transition. Physical Review B, 31: 430–436.CrossRefGoogle Scholar
  4. Arai, M., and Ishikawa, Y., 1985. A new oxide spin glass system of (1–x)FeTiO3xFe2O3. III. Neutron scattering studies of magnetization processes in a cluster type spin glass of 90FeTiO3‐10Fe2O3. Journal of the Physical Society of Japan, 54: 795–802.CrossRefGoogle Scholar
  5. Arai, M., Ishikawa, Y., Saito, N., and Takei, H., 1985a. A new oxide spin glass system of (1–x)FeTiO3xFe2O3. II. Neutron scattering studies of a cluster type spin glass of 90FeTiO3‐10Fe2O3. Journal of the Physical Society of Japan, 54: 781–794.CrossRefGoogle Scholar
  6. Arai, M., Ishikawa, Y., and Takei, H., 1985b. A new oxide spin glass system of (1–x)FeTiO3xFe2O3. IV. Neutron scattering studies on a reentrant spin glass of 79FeTiO3‐21Fe2O3 single crystal. Journal of the Physical Society of Japan, 54: 2279–2286.CrossRefGoogle Scholar
  7. Ballet, O., Coey, J.M.D., Mangin, P., and Townsend, M.G., 1985. Ferrous talk—a planar antiferromagnet. Solid State Communications, 55: 787–790.CrossRefGoogle Scholar
  8. Bando, Y., Kiyama, M., Yamamoto, N., Takada, T., Shinjo, T., and Takaki, H., 1965. The magnetic properties of α‐Fe2O3 fine particles. Journal of the Physical Society of Japan, 20: 2086.CrossRefGoogle Scholar
  9. Besnus, M.J., and Meyer, A.J.P., 1964. Nouvelles données expérimentals sur le magnétisme de la pyrrhotine naturelle. In Proceedings of the International Conference on Magnetism. Nottingham: Institute of Physics, pp. 507–511.Google Scholar
  10. Bickford, L.R. Jr., 1950. Ferromagnetic resonance absorption in magnetite single crystals. Physical Review, 78: 449–457.CrossRefGoogle Scholar
  11. Borovik‐Romanov, A.S., Egorov, V.M., Ikornikova, N.Y., Kreines, N.M., Ozhogin, V.I., and Prozorova, L.A., 1981. Antiferromagnetic carbonates of the 3d elements. Soviet Physics—Crystallography, 26: 623–630.Google Scholar
  12. Brabers, V.A., Walz, M.F., and Kronmüller, H., 1998. Impurity effects upon the Verwey transition in magnetite. Physical Review B, 58: 14163–14166.CrossRefGoogle Scholar
  13. Bucur, I., 1978. Experimental study of the origin and properties of the defect moment in single domain haematite. Geophysical Journal of the Royal Astronomical Society, 55: 589–604.Google Scholar
  14. Burgardt, P., and Seehra, M.S., 1977. Magnetic susceptibility of iron pyrite (FeS2) between 4.2 and 620 K. Solid State Communications, 22: 153–156.CrossRefGoogle Scholar
  15. Coey, J.M.D., and Ghose, S., 1988. Magnetic phase transitions in silicate minerals. In Ghose, S., Coey, J.M.D., and Salje, E. (eds.), Structural and Magnetic Phase Transitions in Minerals. New York: Springer‐Verlag, pp. 162–184.Google Scholar
  16. Coey, J.M.D., Moukarika, A., and Ballet, O., 1982. Magnetic order in silicate minerals. Journal of Applied Physics, 53: 8320–8325.CrossRefGoogle Scholar
  17. da Costa, G.M., Van San, E., De Grave, E., Vandenberghe, R.E., Barrón, V., and Datas, L., 2002. Al hematites prepared by homogeneous precipitation of oxinates: material characterization and determination of the Morin transition. Physics and Chemistry of Minerals, 29: 122–131.CrossRefGoogle Scholar
  18. de Boer, C.B., and Dekkers, M.J., 1996. Grain‐size dependence of the rock magnetic properties for a natural maghemite. Geophysical Research Letters, 23: 2815–2818.CrossRefGoogle Scholar
  19. Dekkers, M.J., 1989. Magnetic properties of natural pyrrhotite. II. High‐ and low‐temperature behaviour of J rs and TRM as a function of grain size. Physics of the Earth and Planetary Interiors, 57: 266–283.CrossRefGoogle Scholar
  20. Dekkers, M.J., and Linssen, J.H., 1989. Rock magnetic properties of fine‐grained natural low‐temperature haematite with reference to remanence acquisition mechanisms in red beds. Geophysical Journal International, 99, 1–18.CrossRefGoogle Scholar
  21. Dekkers, M.J., Mattéi, J.L., Fillion, G., and Rochette, P., 1989. Grain‐size dependence of the magnetic behavior of pyrrhotite during its low‐temperature transition at 34 K. Geophysics Research Letters, 16: 855–858.Google Scholar
  22. Dekkers, M.J., Passier, H.F., and Schoonen, M.A.A., 2000. Magnetic properties of hydrothermally synthesized greigite (Fe3S4). II. High‐ and low‐temperature characteristics. Geophysical Journal International, 141: 809–819.CrossRefGoogle Scholar
  23. Dunlop, D.J., 2003. Stepwise and continuous low‐temperature demagnetization. Geophysical Research Letters, 30: 1582, doi: 10.1029/2003GL017268.CrossRefGoogle Scholar
  24. Dunlop, D.J., and Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press.Google Scholar
  25. Dzyaloshinsky, I., 1958. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids, 4: 241–255.CrossRefGoogle Scholar
  26. Ellwood, B.B., Balsam, W., Burkart, B., Long,. G.J., and Buhl, M.L., 1986. Anomalous magnetic properties in rocks containing the mineral siderite: paleomagnetic implications. Journal of Geophysical Research, 91: 12779–12790.Google Scholar
  27. Ellwood, B.B., Burkart, B., Rajeshwar, K., Darwin, R.L., Neeley, R.A., McCall, A.B., Long, G.J., Buhl, M.L., and Hickcox, C.W., 1989. Are the iron carbonate minerals, ankerite and ferroan dolomite, like siderite, important in paleomagnetism? Journal of Geophysical Research, 94: 7321–7331.Google Scholar
  28. Forstat, H., Love, N.D., and McElearney, J., 1965. Specific heat of Fe3(PO4)2·8H2O. Physical Review, 139: A1246–1248.CrossRefGoogle Scholar
  29. Forsyth, J.B., Johnson, C.E., and Wilkinson, C., 1970. The magnetic structure of vivianite, Fe3(PO4)2·8H2O. Journal of Physics C: Solid State Physics, 3: 1127–1139.CrossRefGoogle Scholar
  30. Frederichs, T., von Dobeneck, T., Bleil, U., and Dekkers, M.J., 2003. Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low‐temperature magnetic properties. Physics and Chemistry of Earth, 28: 669–679.CrossRefGoogle Scholar
  31. Gallon, T.E., 1968. The remanent magnetization of haematite single crystals. Proceedings of the Royal Society of London A, 303: 511–524.CrossRefGoogle Scholar
  32. Guyodo, Y., Mostrom, A., Lee Penn, R., and Banerjee, S.K., 2003. From nanodots to nanorods: Oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophysical Research Letters, 30: 1512, doi: 10.1029/2003GL017021.CrossRefGoogle Scholar
  33. Haigh, G., 1957. Observations on the magnetic transition in hematite at −15 °C. Philosophical Magazine, 2: 877–890.CrossRefGoogle Scholar
  34. Harrison, C.G.A., and Peterson, M.N.A., 1965. A magnetic mineral from the Indian Ocean. American Mineralogist, 50: 704–712.Google Scholar
  35. Hedley, I.G., 1971. The weal ferromagnetism of goethite (α‐FeOOH). Zeitschrift für Geophysik, 37: 409–420.Google Scholar
  36. Heider, F., Dunlop, D.J., and Soffel, H.C., 1992. Low‐temperature and alternating field demagnetization of saturation remanence and thermoremanence in magnetite grains (0.037 to 5 mm). Journal of Geophysical Research, 97: 9371–9381.Google Scholar
  37. Hirt, A.M., Lanci, L., Dobson, J., Weidler, P., and Gehring, A.U., 2002. Low‐temperature magnetic properties of lepidocrocite. Journal of Geophysical Research, 107: 10.1029/2001JB000242.Google Scholar
  38. Hobbs, D., and Hafner, J., 1999. Magnetism and magneto‐structural effects in transition‐metal sulphides. Journal of Physics: Condensed Matter, 11: 8197–8222.CrossRefGoogle Scholar
  39. Hoffman, K.A., 1992. Self‐reversal of thermoremanent magnetization in the ilmenite‐hematite system: Order‐disorder, symmetry, and spin alignment. Journal of Geophysical Research, 97: 10883–10895.Google Scholar
  40. Housen, B., Banerjee, S.K., and Moskowitz, B.M., 1996. Low‐temperature magnetic properties of siderite and magnetite in marine sediments. Geophysical Research Letters, 23: 2843–2846.CrossRefGoogle Scholar
  41. Hoye, G.S., and O'Reilly, W., 1972. A magnetic study of the ferro‐magnesian olivines (FexMg1–x)2SiO4, 0 < x < 1. Journal of Physics and Chemistry of Solids, 33: 1827–1834.Google Scholar
  42. Ishikawa, Y., and Akimoto, S., 1957. Magnetic properties of the FeTiO3‐Fe2O3 solid solution series. Journal of the Physical Society of Japan, 12: 1083–1098.CrossRefGoogle Scholar
  43. Ishikawa, Y., Saito, N., Arai, M., Watanabe, Y., and Takei, H., 1985. A new oxide spin glass system of (1–x)FeTiO3xFe2O3. I. Magnetic properties. Journal of the Physical Society of Japan, 54: 312–325.CrossRefGoogle Scholar
  44. Jacobs, I.S., 1963. Metamagnetism of siderite (FeCO3). Journal of Applied Physics, 34: 1106–1107.CrossRefGoogle Scholar
  45. Kąkol, Z., and Honig, J.M., 1989. Influence of deviation from ideal stoichiometry on the anisotropy parameters of magnetite Fe3(1–δ)O4. Physical Review B, 40: 9090–9097.CrossRefGoogle Scholar
  46. Kąkol, Z., Sabol, J., and Honig, J.M., 1991a. Cation distribution and magnetic properties of titanomagnetites Fe3–xTixO4 (0 ≤ x < 1). Physical Review B, 43: 649–654.CrossRefGoogle Scholar
  47. Kąkol, Z., Sabol, J., and Honig, J.M., 1991b. Magnetic anisotropy of titanomagnetites Fe3–xTixO4, 0 ≤ x ≤ 0.55. Physical Review B, 44: 2198–2204.CrossRefGoogle Scholar
  48. Kąkol, Z., Sabol, J., Stickler, J., Kozłowski, A., and Honig, J.M., 1994. Influence of titanium doping on the magnetocrystalline anisotropy of magnetite. Physical Review B, 49: 12767–12772.CrossRefGoogle Scholar
  49. Kaye, G., 1962. The effect of titanium on the low temperature transition in natural crystals of haematite. Proceedings of the Physical Society, 80: 238–243.CrossRefGoogle Scholar
  50. King, J.G., and Williams, W., 2000. Low‐temperature magnetic properties of magnetite. Journal of Geophysical Research, 105: 16427–16436.CrossRefGoogle Scholar
  51. Kirschvink, J.L., Jones, D.S., and Mac Fadden, B.J., (eds.), 1985. Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. New York: Plenum Press.Google Scholar
  52. Kletetschka, G., and Banerjee, S.K., 1995. Magnetic stratigraphy of Chinese loess as a record of natural fires. Geophysical Research Letters, 22: 1341–1343.CrossRefGoogle Scholar
  53. Kosterov, A.A., 2001. Magnetic hysteresis of pseudo‐single‐domain and multidomain magnetite below the Verwey transition. Earth and Planetary Science Letters, 186: 245–253.CrossRefGoogle Scholar
  54. Kosterov, A.A., 2002. Low‐temperature magnetic hysteresis properties of partially oxidized magnetite. Geophysical Journal International, 149: 796–804.CrossRefGoogle Scholar
  55. Kosterov, A.A., 2003. Low‐temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history. Geophysical Journal International, 154: 58–71.CrossRefGoogle Scholar
  56. Kozłowski, A., Kąkol, Z., Kim, D., Zaleski, R., and Honig, J.M., 1996a. Heat capacity of Fe3–αMαO4 (M=Zn, Ti, 0 ≤ α ≤ 0.04). Physical Review B, 54: 12093–12098.CrossRefGoogle Scholar
  57. Kozłowski, A., Metcalf, P., Kąkol, Z., and Honig, J.M., 1996b. Electrical and magnetic properties of Fe3–zAlzO4 (z < 0.06). Physical Review B, 53: 15113–15118.CrossRefGoogle Scholar
  58. Matzka, J., Krása, D., Kunzmann, T., Schult, A., and Petersen, N., 2003. Magnetic state of 10–40 Ma old ocean basalts and its implications for natural remanent magnetization. Earth and Planetary Science Letters, 206: 541–553.CrossRefGoogle Scholar
  59. Miyahara, Y., 1972. Impurity effects on the transition temperature of magnetite. Journal of the Physical Society of Japan, 32: 629–634.CrossRefGoogle Scholar
  60. Morin, F.J., 1950. Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium. Physical Review, 78: 819–820.CrossRefGoogle Scholar
  61. Moriya, T., 1960. Anisotropic superexchange interaction and weak ferromagnetism. Physical Review, 120: 91–98.CrossRefGoogle Scholar
  62. Morrish, A.H., 1994. Canted Antiferromagnetism: Hematite. Singapore; River Edge, NJ: World Scientific.Google Scholar
  63. Morrish, A.H., and Watt, L.A.K., 1958. Coercive force of iron oxide micropowders at low temperatures. Journal of Applied Physics, 29: 1029–1033.CrossRefGoogle Scholar
  64. Moskowitz, B.M., Frankel, R.B., and Bazylinski, D.A., 1993. Rock magnetic criteria for the detection of biogenic magnetite. Earth and Planetary Science Letters, 120: 283–300.CrossRefGoogle Scholar
  65. Moskowitz, B.M., Jackson, M., and Kissel, C., 1998. Low‐temperature magnetic behavior of titanomagnetites. Earth and Planetary Science Letters, 157: 141–149.CrossRefGoogle Scholar
  66. Murray, J.W., 1979. Iron oxides. In Burns, R.G., (ed.), Marine Minerals. Washington, DC: Mineralogical Society of America, pp. 47–98.Google Scholar
  67. Muxworthy, A.R., 1999. Low‐temperature susceptibility and hysteresis of magnetite. Earth and Planetary Science Letters, 169: 51–58.CrossRefGoogle Scholar
  68. Muxworthy, A.R., and McClelland, E., 2000a. Review of the low‐temperature magnetic properties of magnetite from a rock magnetic perspective. Geophysical Journal International, 140: 101–114.CrossRefGoogle Scholar
  69. Muxworthy, A.R., and McClelland, E., 2000b. The causes of low‐temperature demagnetization of remanence in multidomain magnetite. Geophysical Journal International, 140: 115–131.CrossRefGoogle Scholar
  70. Nagata, T., 1961. Rock Magnetism. Tokyo: Maruzen Co.Google Scholar
  71. Nininger, R.C. Jr., and Schroeer, D., 1978. Mössbauer studies of the Morin transition in bulk and microcrystalline α‐Fe2O3. Journal of Physics and Chemistry of Solids, 39: 137–144.CrossRefGoogle Scholar
  72. Ortega, B., Caballero, C., Lozano, S., Israde, I., and Vilaclara, G., 2002. 52 000 years of environmental history in Zacapu basin, Michoacan, Mexico: the magnetic record. Earth and Planetary Science Letters, 202: 663–675.CrossRefGoogle Scholar
  73. Özdemir, Ö., 2000. Coercive force of single crystals of magnetite at low temperatures. Geophysical Journal International, 141: 351–356.CrossRefGoogle Scholar
  74. Özdemir, Ö., and Dunlop, D.J., 2000. Intermediate magnetite formation during dehydration of goethite. Earth and Planetary Science Letters, 177: 59–67.CrossRefGoogle Scholar
  75. Özdemir, Ö., Dunlop, D.J., and Moskowitz, B.M., 1993. The effect of oxidation on the Verwey transition in magnetite. Geophysical Research Letters, 20: 1671–1674.Google Scholar
  76. Özdemir, Ö., Dunlop, D.J., and Moskowitz, B.M., 2002. Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth and Planetary Science Letters, 194: 343–358.CrossRefGoogle Scholar
  77. Ozima, M., Ozima, M., and Nagata, T., 1964. Low temperature treatment as an effective means of “magnetic cleaning” of natural remanent magnetization. Journal of Geomagnetism and Geoelectricity, 16: 37–40.Google Scholar
  78. Roberts, A.P., 1995. Magnetic properties of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 134: 227–236.CrossRefGoogle Scholar
  79. Robie, R.A., Haselton, H.T. Jr., and Hemingway, B.S., 1984. Heat capacities and entropies of rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K. American Mineralogist, 69: 349–357.Google Scholar
  80. Rochette, P.,1988. La Susceptibilité Anisotrope des Roches Faiblement Magnétiques: Origines et Applications, Thèse d'Etat, Université de Grenoble.Google Scholar
  81. Rochette, P., and Fillion, G., 1989. Field and temperature behavior of remanence in synthetic goethite: paleomagnetic implications. Geophysical Research Letters, 16: 851–854.Google Scholar
  82. Rochette, P., Fillion, G., Mattéi, J.L., and Dekkers, M.J., 1990. Magnetic transition at 30–34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks. Earth and Planetary Science Letters, 98: 319–328.CrossRefGoogle Scholar
  83. Rozenberg, G.Kh., Hearne, G.R., Pasternak, M.P., Metcalf, P.A., and Honig, J.M., 1996. Nature of the Verwey transition in magnetite (Fe3O4) to pressures of 16 GPa. Physical Review B, 53: 6482–6487.CrossRefGoogle Scholar
  84. Samara, G.A., 1968. Effect of pressure on the metal‐nonmetal transition and conductivity of Fe3O4. Physical Review Letters, 21: 795–797.CrossRefGoogle Scholar
  85. Santoro, R.P., Newham, R.E., and Nomura, S., 1966. Magnetic properties of Mn2SiO4 and Fe2SiO4. Journal of Physics and Chemistry of Solids, 27: 655–666.CrossRefGoogle Scholar
  86. Sawaoka, A., Miyahara, S., and Akimoto, S., 1968. Magnetic properties of several metasilicates and metagermanates with pyroxene structure. Journal of the Physical Society of Japan, 25: 1253–1257.CrossRefGoogle Scholar
  87. Schmidbauer, E., and Keller, R., 1996. Magnetic properties and rotational hysteresis of Fe3O4 and γ‐Fe2O3 particles ∼250 nm in diameter. Journal of Magnetism and Magnetic Materials, 152: 99–108.CrossRefGoogle Scholar
  88. Schmidbauer, E., and Readman, P.W., 1982. Low temperature magnetic properties of Ti‐rich Fe‐Ti spinels. Journal of Magnetism and Magnetic Materials, 27: 114–118.CrossRefGoogle Scholar
  89. Schroeer, D., and Nininger, R.C. Jr., 1967. Morin transition in α‐Fe2O3 microcrystals. Physical Review Letters, 19: 632–634.CrossRefGoogle Scholar
  90. Seehra, M.S., and Jagadeesh, M.S., 1979. Temperature‐dependent magnetic susceptibility of marcasite (FeS2). Physical Review B, 20: 3897–3899.CrossRefGoogle Scholar
  91. Senftle, F.E., Thorpe, A.N., Briggs, C., Alexander, C., Minkin, J., and Griscom, D.L., 1975. The Néel transition and magnetic properties of terrestrial, synthetic, and lunar ilmenites. Earth and Planetary Science Letters, 26: 377–386.CrossRefGoogle Scholar
  92. Smirnov, A.V., and Tarduno, J.A., 2002. Magnetic field control of the low‐temperature magnetic properties of stoichiometric and cation‐deficient magnetite. Earth and Planetary Science Letters, 194: 359–368.CrossRefGoogle Scholar
  93. Snowball, I., and Torii, M., 1999. Incidence and significance of magnetic iron sulphides in Quaternary sediments and soils. In Maher, B.A., and Thompson, R. (eds.), Quaternary Climates, Environments and Magnetism. Cambridge: Cambridge University Press, pp. 199–230.Google Scholar
  94. Strangway, D.W., Honea, R.M., McMahon, B.E., and Larson, E.E., 1968. The magnetic properties of naturally occurring goethite. Geophysical Journal of the Royal Astronomical Society, 15: 345–359.Google Scholar
  95. Syono, Y., 1965. Magnetocrystalline anisotropy and magnetostriction of Fe3O4‐Fe2TiO4 series—with special application to rocks magnetism. Japanese Journal of Geophysics, 4: 71–143.Google Scholar
  96. Taylor, R.M., and Schwertmann, U., 1974. Maghemite in soils and its origin. I. Properties and observations on soil maghemites. Clay Minerals, 10: 289–298.CrossRefGoogle Scholar
  97. Thorpe, A.N., Minkin, J.A., Senftle, F.E., Alexander, C., Briggs, C., Evans, H.T. Jr., and Nord, G.L. Jr., 1977. Cell dimensions and antiferromagnetism of lunar and terrestrial ilmenite single crystals. Journal of Physics and Chemistry of Solids, 38: 115–123.CrossRefGoogle Scholar
  98. Tucker, P., 1981. Low‐temperature magnetic hysteresis properties of multidomain single‐crystal titanomagnetite. Earth and Planetary Science Letters, 54: 167–172.CrossRefGoogle Scholar
  99. Uyeda, S., 1958. Thermo‐remanent magnetism as a medium of palaeomagnetism, with special reference to reverse thermo‐remanent magnetism. Japanese Journal of Geophysics, 2: 1–123.Google Scholar
  100. van der Lugt, W., and Poulis, N.J., 1961. The splitting of the nuclear magnetic resonance lines in vivianite. Physica, 27: 733–750.CrossRefGoogle Scholar
  101. Verwey, E.J.W., 1939. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature, 44: 327–328.Google Scholar
  102. Verwey, E.J.W., and Haayman, P.W., 1941. Electronic conductivity and transition point of magnetite (“Fe3O4”). Physica, 8: 979–987.CrossRefGoogle Scholar
  103. Walz, F., 2002. The Verwey transition—a topical review. Journal of Physics: Condensed Matter, 14: R285–R340.CrossRefGoogle Scholar
  104. Weiss, P., and Forrer, R., 1929. La saturation absolue des ferromagnétiques et les lois d'approche en fonction du champ et de la température. Annales de Physique, 10e série, 12: 279–374.Google Scholar
  105. Weiss, P., and Renger, K., 1914. Die anfängliche Permeabilität von Eisen und Magnetit in Funktion der Temperatur und die Abhängigkeit der Umwandlungspunkte von der Feldstärke. Archiv für Electrotechnik, 2: 406–418.CrossRefGoogle Scholar
  106. Zergenyi, R.S., Hirt, A.M., Zimmermann, S., Dobson, J.B., and Lowrie, W., 2000. Low‐temperature magnetic behavior of ferrihydrite. Journal Geophysical Research, 105: 8297–8303.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andrei Kosterov

There are no affiliations available