Skip to main content
  • 118 Accesses

Introduction

Strong magnetic anomalies have been detected over the south hemisphere of Mars. The Mars missions prior to Mars Global Surveyor (MGS) detected no appreciable magnetic field around the planet, which led to the conclusion that the Martian core field is weaker than Earth's by more than an order of magnitude. However, orbiting at elevations as low as 100ā€“200 km during the science phase and aerobreaking phase, MGS detected a very strong crustal magnetic field, as strong as 200 nT, over the ancient southern highlands (Acuna et al., 1999), indicating that the Martian crust is more magnetic than Earth's by more than an order of magnitude.

There is evidence from the Martian meteorites that a magnetic field as strong as āˆ¼3000 nT has existed on the surface of Mars. The oldest Martian meteorite (ALH84001) formed before 4 Ga (e.g., Collinson, 1997; Kirschvink et al., 1997; Weiss, et al., 2002; Antretter et al., 2003) and the young Martian meteorites that have crystallization ages...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Acuna, M.H. et al. 1999. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284: 790ā€“793.

    ArticleĀ  Google ScholarĀ 

  • Anderson, R.C. et al., Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. Journal of Geophysical Research, 106: 20,563ā€“20,585.

    Google ScholarĀ 

  • Antretter, M., Fuller, M., Scott, E., Jackson, M., Moskowitz, B., and Soleid, P., 2003. Paleomagnetic record of Martian meteorite ALH84001. Journal of Geophysical Research, 108(E6): 5049, doi:10, 1029/2002JE001979.

    ArticleĀ  Google ScholarĀ 

  • Arkaniā€Hamed J., 2001a. A 50 degree spherical harmonic model of the magnetic field of Mars. Journal of Geophysical Research, 106: 23,197ā€“23,208.

    Google ScholarĀ 

  • Arkaniā€Hamed, J., 2001b. Paleomagnetic pole positions and poles reversals of Mars. Geophysical Research Letters, 28: 3409ā€“3412.

    ArticleĀ  Google ScholarĀ 

  • Arkaniā€Hamed, J., 2002. An improved 50ā€degree spherical harmonic model of the magnetic field of Mars, derived from both highā€altitude and lowā€altitude observations. Journal of Geophysical Research, 107: 10.1029/2001JE001835.

    Google ScholarĀ 

  • Arkaniā€Hamed, J., 2004a. Timing of the Martian core dynamo. Journal of Geophysical Research, 109(E3): E03006, doi:10.1029/2003JE002195.

    ArticleĀ  Google ScholarĀ 

  • Arkaniā€Hamed J., 2004b. A coherent model of the crustal magnetic field of Mars. Journal Of Geophysical Research, 109: E09005, doi:10.1029/2004JE002265.

    ArticleĀ  Google ScholarĀ 

  • Arkaniā€Hamed, J., and Boutin, D., 2004. Paleomagnetic poles of Mars: Revisited. Journal of Geophysical Research, 109: doi:10.1029/2003JE0029.

    Google ScholarĀ 

  • Bliel, U., and Petersen, N., 1983. Variations in magnetization intensity and lowā€temperature titanoā€magnetite oxidation of ocean floor basalts. Nature, 301: 384ā€“388.

    ArticleĀ  Google ScholarĀ 

  • Cain, J.C., Ferguson, B., and Mozzoni, D., 2003. An n = 90 model of the Martian magnetic field. Journal of Geophysical Research, 108: 10.1029/2000JE001487.

    Google ScholarĀ 

  • Cisowski, S.M., 1986. Magnetic studies on Shergotty and other SNC meteorites. Geochemica Cosmochemica Acta, 50: 1043ā€“1048.

    ArticleĀ  Google ScholarĀ 

  • Cisowski, S., and Fuller, M., 1978. The effect of shock on the magnetism of terrestrial rocks. Journal of Geophysical Research, 83: 3441ā€“3458.

    Google ScholarĀ 

  • Collinson, D.W., 1997. Magnetic properties of Martian meteorites: implications for an ancient Martian magnetic field. Planetary Science, 32: 803ā€“811.

    Google ScholarĀ 

  • Connerney, J.E.P., Acuna, M.H., Wasilewski, P.J., Kletetschka, G., Ness, N.F., Remes, H., Lin, R.P., and Mitchell, D.L., 2001. The global magnetic field of Mars and implications for crustal evolution. Geophysical Research Letters, 28: 4015ā€“4018.

    ArticleĀ  Google ScholarĀ 

  • Frey, H., Shockey, K.M., Frey, E.L., Roark, J. H., and Sakimoto, S.E.H., 2001. A very large population of likely buried impact basins in the northern lowlands of Mars revealed by MOLA data. Lunar and Planetary Science Conference XXXII, Abstr. 1680.

    Google ScholarĀ 

  • Gilder, S.A., Le Goff, M., Peyronneau, J., and Chervin, J., 2002. Novel high pressure magnetic measurements with application to magnetite. Geophysical Research Letters, 29: 10,1029/2001GL014227, 2002.

    Google ScholarĀ 

  • Hargraves, R.B., Knudsen, J.M., Madsen, M.B., and Bertelsen, P., 2001. Finding the right rocks on Mars. EOS: Transactions, American Geophysical Union, 82: 292ā€“293.

    Google ScholarĀ 

  • Hartmann, W.K., and. Neukum, G., 2001. Cratering chronology and the evolution of Mars. Space Science Reviews, 96: 165ā€“194.

    ArticleĀ  Google ScholarĀ 

  • Hood, L.L., and Hartdegen, K., 1997. A crustal magnetization model for the magnetic field of Mars: a preliminary study of the Tharsis region. Geophysical Research Letters, 24: 727ā€“730.

    ArticleĀ  Google ScholarĀ 

  • Hood, L.L., and Zacharian, A., 2001. Mapping and modeling of magnetic anomalies in the northern polar region of Mars. Journal of Geophysical Research, 106: 14601ā€“14619.

    ArticleĀ  Google ScholarĀ 

  • Hood, L.L., Richmond, N.C., Pierazzo, E., and Rochette, P., Distribution of crustal magnetic fields on Mars: Shock effects of basinā€forming impacts. Geophysical Research Letters, 30(6): 1281, doi:10.1029/2002GL016657.

    Google ScholarĀ 

  • Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2000. Mineralogy of the sources for magnetic anomalies on Mars. Meteoritics and Planetary Science, 35: 895ā€“899.

    ArticleĀ  Google ScholarĀ 

  • Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2002. The role of hematiteā€ilmenite solid solution in the production of magnetic anomalies in groundā€ and satelliteā€based data. Tectonophysics, 347: 167ā€“177.

    ArticleĀ  Google ScholarĀ 

  • Kletetschka, G., Connerney, J.E.P., Ness, N.F., and Acuna, M.H., 2004. Pressure effects on Martian crustal magnetization near large impact basins. Meteoritics and Planetary Science, 39: 1839ā€“1848.

    Google ScholarĀ 

  • Kirschvink, J.L., Maine, A.T., and Vali, H., 1997. Paleomagnetic evidence of a lowā€temperature origin of carbonate in the Martian meteorite ALH84001. Science, 275: 1629ā€“1633.

    ArticleĀ  Google ScholarĀ 

  • Langlais, B., Purucker, M.E., and Mandea, M., 2004. Crustal magnetic field of Mars. Journal of Geophysical Research, 109: E002008, doi:10.1029/2003JE002048.

    ArticleĀ  Google ScholarĀ 

  • McSween, H.Y., and Treiman, A.H., 1998. Martian meteorites, Chapter 6 in Planetary materials. Reviews in Mineralogy, 36: 53.

    Google ScholarĀ 

  • Melosh, H.J., 1980. Tectonic patterns on a reoriented planet: Mars. Icarus, 44: 745ā€“751.

    ArticleĀ  Google ScholarĀ 

  • Mitchell, D.L. et al. 2001. Probing Marsā€™ crustal magnetic field and ionosphere with the MGS electron reflectometer. Journal of Geophysical Research, 106: 23,419ā€“23,427.

    Google ScholarĀ 

  • Mohit, P.S., and Arkaniā€Hamed, J., 2004. Impact demagnetization of the Martian crust. Icarus, 168: 305ā€“317.

    ArticleĀ  Google ScholarĀ 

  • Murray, B.C., and Malin, M.C., 1973. Polar wandering on Mars. Science, 179: 997ā€“1000.

    ArticleĀ  Google ScholarĀ 

  • Nyquist, L.E. 2001. Ages and geological history of Martian meteorites. In Kallenbach, R., Geiss, J., and Hartmann, W.K. (eds.), Chronology and Evolution of Mars. Dordrecht, the Netherlands: Kluwer Academic Publishers.

    Google ScholarĀ 

  • Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and Acuna, M., 2000. An altitudeā€normalized magnetic map of Mars and its interpretation. Geophysical Research Letters, 27: 2449ā€“2452.

    ArticleĀ  Google ScholarĀ 

  • Rochette, P., Fillion, G., Ballou, R., Brunet, F., Ouladdiaf, B., and Hood, L., 2003. High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars. Geophysical Research Letters, 30(13): 1683, doi:10.1029/2003GL017359.

    ArticleĀ  Google ScholarĀ 

  • Schultz, P.H., and Lutzā€Garihan, A.B., 1982. Grazing impacts on Mars: a record of lost satellites. Journal Geophysical Research, 87: A84ā€“A96.

    Google ScholarĀ 

  • Schultz, P.H., and Lutzā€Garihan, A.B., 1988. Polar wandering of Mars. Icarus, 73: 91ā€“141.

    ArticleĀ  Google ScholarĀ 

  • Schultz, R.A., 1997. Dual-process genesis for Valles Marineris and troughs on Mars, presented at the XXVIII Lunar and Planetary Science Conference, Houston, Texas.

    Google ScholarĀ 

  • Spada, G. 1996. Longā€term rotation and mantle dynamics of the Earth, Mars and Venus. Journal of Geophysical Research, 101: 2253ā€“2266.

    ArticleĀ  Google ScholarĀ 

  • Tanaka, K.L., 1997. Origin of Valles Marineris and Noctis Labyrinthus, Mars, by structurally controlled collapses and erosion of crustal materials, presented at the XXXVIII Lunar and Planetary Science Conference, Houston, Texas.

    Google ScholarĀ 

  • Weiss, B.P., Vali, H., Baudenbacher, F.J., Kirschvink, J.L., Stewart, S.T., and Schuster, D.L., 2002. Records of an ancient Martian field in ALH84001. Earth and Planetary Science Letters, 201: 449ā€“463.

    ArticleĀ  Google ScholarĀ 

  • Wilkins, S.J., and Schultz, R.A., 2003. Cross faults in extensional settings: stress triggering, displacement localization, and implications for the origin of blunt troughs at Valles Marineris, Mars. Journal of Geophysical Research, 108: E6, 5056, doi:1029/2002JE001968.

    ArticleĀ  Google ScholarĀ 

  • Willeman, R.J., 1984. Reorientation of planets with elastic lithospheres. Icarus, 60: 701ā€“709.

    ArticleĀ  Google ScholarĀ 

  • Zuber, M.T. 2000. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287: 1788ā€“1793.

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgment

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Springer-Verlag

About this entry

Cite this entry

Arkaniā€Hamed, J. (2007). Magnetic Field of Mars. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_176

Download citation

Publish with us

Policies and ethics