Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Magnetic Field of Mars

  • Jafar Arkani‐Hamed
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_176


Strong magnetic anomalies have been detected over the south hemisphere of Mars. The Mars missions prior to Mars Global Surveyor (MGS) detected no appreciable magnetic field around the planet, which led to the conclusion that the Martian core field is weaker than Earth's by more than an order of magnitude. However, orbiting at elevations as low as 100–200 km during the science phase and aerobreaking phase, MGS detected a very strong crustal magnetic field, as strong as 200 nT, over the ancient southern highlands (Acuna et al., 1999), indicating that the Martian crust is more magnetic than Earth's by more than an order of magnitude.

There is evidence from the Martian meteorites that a magnetic field as strong as ∼3000 nT has existed on the surface of Mars. The oldest Martian meteorite (ALH84001) formed before 4 Ga (e.g., Collinson, 1997; Kirschvink et al., 1997; Weiss, et al., 2002; Antretter et al., 2003) and the young Martian meteorites that have crystallization ages...

This is a preview of subscription content, log in to check access.



This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.


  1. Acuna, M.H. et al. 1999. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284: 790–793.CrossRefGoogle Scholar
  2. Anderson, R.C. et al., Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. Journal of Geophysical Research, 106: 20,563–20,585.Google Scholar
  3. Antretter, M., Fuller, M., Scott, E., Jackson, M., Moskowitz, B., and Soleid, P., 2003. Paleomagnetic record of Martian meteorite ALH84001. Journal of Geophysical Research, 108(E6): 5049, doi:10, 1029/2002JE001979.CrossRefGoogle Scholar
  4. Arkani‐Hamed J., 2001a. A 50 degree spherical harmonic model of the magnetic field of Mars. Journal of Geophysical Research, 106: 23,197–23,208.Google Scholar
  5. Arkani‐Hamed, J., 2001b. Paleomagnetic pole positions and poles reversals of Mars. Geophysical Research Letters, 28: 3409–3412.CrossRefGoogle Scholar
  6. Arkani‐Hamed, J., 2002. An improved 50‐degree spherical harmonic model of the magnetic field of Mars, derived from both high‐altitude and low‐altitude observations. Journal of Geophysical Research, 107: 10.1029/2001JE001835.Google Scholar
  7. Arkani‐Hamed, J., 2004a. Timing of the Martian core dynamo. Journal of Geophysical Research, 109(E3): E03006, doi:10.1029/2003JE002195.CrossRefGoogle Scholar
  8. Arkani‐Hamed J., 2004b. A coherent model of the crustal magnetic field of Mars. Journal Of Geophysical Research, 109: E09005, doi:10.1029/2004JE002265.CrossRefGoogle Scholar
  9. Arkani‐Hamed, J., and Boutin, D., 2004. Paleomagnetic poles of Mars: Revisited. Journal of Geophysical Research, 109: doi:10.1029/2003JE0029.Google Scholar
  10. Bliel, U., and Petersen, N., 1983. Variations in magnetization intensity and low‐temperature titano‐magnetite oxidation of ocean floor basalts. Nature, 301: 384–388.CrossRefGoogle Scholar
  11. Cain, J.C., Ferguson, B., and Mozzoni, D., 2003. An n = 90 model of the Martian magnetic field. Journal of Geophysical Research, 108: 10.1029/2000JE001487.Google Scholar
  12. Cisowski, S.M., 1986. Magnetic studies on Shergotty and other SNC meteorites. Geochemica Cosmochemica Acta, 50: 1043–1048.CrossRefGoogle Scholar
  13. Cisowski, S., and Fuller, M., 1978. The effect of shock on the magnetism of terrestrial rocks. Journal of Geophysical Research, 83: 3441–3458.Google Scholar
  14. Collinson, D.W., 1997. Magnetic properties of Martian meteorites: implications for an ancient Martian magnetic field. Planetary Science, 32: 803–811.Google Scholar
  15. Connerney, J.E.P., Acuna, M.H., Wasilewski, P.J., Kletetschka, G., Ness, N.F., Remes, H., Lin, R.P., and Mitchell, D.L., 2001. The global magnetic field of Mars and implications for crustal evolution. Geophysical Research Letters, 28: 4015–4018.CrossRefGoogle Scholar
  16. Frey, H., Shockey, K.M., Frey, E.L., Roark, J. H., and Sakimoto, S.E.H., 2001. A very large population of likely buried impact basins in the northern lowlands of Mars revealed by MOLA data. Lunar and Planetary Science Conference XXXII, Abstr. 1680.Google Scholar
  17. Gilder, S.A., Le Goff, M., Peyronneau, J., and Chervin, J., 2002. Novel high pressure magnetic measurements with application to magnetite. Geophysical Research Letters, 29: 10,1029/2001GL014227, 2002.Google Scholar
  18. Hargraves, R.B., Knudsen, J.M., Madsen, M.B., and Bertelsen, P., 2001. Finding the right rocks on Mars. EOS: Transactions, American Geophysical Union, 82: 292–293.Google Scholar
  19. Hartmann, W.K., and. Neukum, G., 2001. Cratering chronology and the evolution of Mars. Space Science Reviews, 96: 165–194.CrossRefGoogle Scholar
  20. Hood, L.L., and Hartdegen, K., 1997. A crustal magnetization model for the magnetic field of Mars: a preliminary study of the Tharsis region. Geophysical Research Letters, 24: 727–730.CrossRefGoogle Scholar
  21. Hood, L.L., and Zacharian, A., 2001. Mapping and modeling of magnetic anomalies in the northern polar region of Mars. Journal of Geophysical Research, 106: 14601–14619.CrossRefGoogle Scholar
  22. Hood, L.L., Richmond, N.C., Pierazzo, E., and Rochette, P., Distribution of crustal magnetic fields on Mars: Shock effects of basin‐forming impacts. Geophysical Research Letters, 30(6): 1281, doi:10.1029/2002GL016657.Google Scholar
  23. Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2000. Mineralogy of the sources for magnetic anomalies on Mars. Meteoritics and Planetary Science, 35: 895–899.CrossRefGoogle Scholar
  24. Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2002. The role of hematite‐ilmenite solid solution in the production of magnetic anomalies in ground‐ and satellite‐based data. Tectonophysics, 347: 167–177.CrossRefGoogle Scholar
  25. Kletetschka, G., Connerney, J.E.P., Ness, N.F., and Acuna, M.H., 2004. Pressure effects on Martian crustal magnetization near large impact basins. Meteoritics and Planetary Science, 39: 1839–1848.Google Scholar
  26. Kirschvink, J.L., Maine, A.T., and Vali, H., 1997. Paleomagnetic evidence of a low‐temperature origin of carbonate in the Martian meteorite ALH84001. Science, 275: 1629–1633.CrossRefGoogle Scholar
  27. Langlais, B., Purucker, M.E., and Mandea, M., 2004. Crustal magnetic field of Mars. Journal of Geophysical Research, 109: E002008, doi:10.1029/2003JE002048.CrossRefGoogle Scholar
  28. McSween, H.Y., and Treiman, A.H., 1998. Martian meteorites, Chapter 6 in Planetary materials. Reviews in Mineralogy, 36: 53.Google Scholar
  29. Melosh, H.J., 1980. Tectonic patterns on a reoriented planet: Mars. Icarus, 44: 745–751.CrossRefGoogle Scholar
  30. Mitchell, D.L. et al. 2001. Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. Journal of Geophysical Research, 106: 23,419–23,427.Google Scholar
  31. Mohit, P.S., and Arkani‐Hamed, J., 2004. Impact demagnetization of the Martian crust. Icarus, 168: 305–317.CrossRefGoogle Scholar
  32. Murray, B.C., and Malin, M.C., 1973. Polar wandering on Mars. Science, 179: 997–1000.CrossRefGoogle Scholar
  33. Nyquist, L.E. 2001. Ages and geological history of Martian meteorites. In Kallenbach, R., Geiss, J., and Hartmann, W.K. (eds.), Chronology and Evolution of Mars. Dordrecht, the Netherlands: Kluwer Academic Publishers.Google Scholar
  34. Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and Acuna, M., 2000. An altitude‐normalized magnetic map of Mars and its interpretation. Geophysical Research Letters, 27: 2449–2452.CrossRefGoogle Scholar
  35. Rochette, P., Fillion, G., Ballou, R., Brunet, F., Ouladdiaf, B., and Hood, L., 2003. High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars. Geophysical Research Letters, 30(13): 1683, doi:10.1029/2003GL017359.CrossRefGoogle Scholar
  36. Schultz, P.H., and Lutz‐Garihan, A.B., 1982. Grazing impacts on Mars: a record of lost satellites. Journal Geophysical Research, 87: A84–A96.Google Scholar
  37. Schultz, P.H., and Lutz‐Garihan, A.B., 1988. Polar wandering of Mars. Icarus, 73: 91–141.CrossRefGoogle Scholar
  38. Schultz, R.A., 1997. Dual-process genesis for Valles Marineris and troughs on Mars, presented at the XXVIII Lunar and Planetary Science Conference, Houston, Texas.Google Scholar
  39. Spada, G. 1996. Long‐term rotation and mantle dynamics of the Earth, Mars and Venus. Journal of Geophysical Research, 101: 2253–2266.CrossRefGoogle Scholar
  40. Tanaka, K.L., 1997. Origin of Valles Marineris and Noctis Labyrinthus, Mars, by structurally controlled collapses and erosion of crustal materials, presented at the XXXVIII Lunar and Planetary Science Conference, Houston, Texas.Google Scholar
  41. Weiss, B.P., Vali, H., Baudenbacher, F.J., Kirschvink, J.L., Stewart, S.T., and Schuster, D.L., 2002. Records of an ancient Martian field in ALH84001. Earth and Planetary Science Letters, 201: 449–463.CrossRefGoogle Scholar
  42. Wilkins, S.J., and Schultz, R.A., 2003. Cross faults in extensional settings: stress triggering, displacement localization, and implications for the origin of blunt troughs at Valles Marineris, Mars. Journal of Geophysical Research, 108: E6, 5056, doi:1029/2002JE001968.CrossRefGoogle Scholar
  43. Willeman, R.J., 1984. Reorientation of planets with elastic lithospheres. Icarus, 60: 701–709.CrossRefGoogle Scholar
  44. Zuber, M.T. 2000. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287: 1788–1793.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jafar Arkani‐Hamed

There are no affiliations available