Encyclopedia of Geomagnetism and Paleomagnetism

2007 Edition
| Editors: David Gubbins, Emilio Herrero-Bervera

Magnetic Domains

  • Susan L. Halgedahl
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4423-6_175

Introduction

The existence of a paleomagnetic record testifies to the ability of magnetic minerals in rocks to retain their natural remanent magnetizations (NRMs) over geologic time. In the early days of paleomagnetism, it was thought that the stable components of NRM mainly resided in extremely small magnetic mineral grains, which occupied the single‐domain (SD) state. However, it is now recognized that, due to their very small size and scarcity, SD particles may not be the major carriers of NRM in many rocks. Instead, it is more likely that much of the NRM is carried by grains which, by virtue of their larger sizes, are subdivided into two or more magnetic domains (Figure M13).
This is a preview of subscription content, log in to check access.

Bibliography

  1. Amar, H., 1858. Magnetization mechanism and domain structure of multidomain particles. Physical Review, 111: 149–153.CrossRefGoogle Scholar
  2. Ambatiello, A., Fabian, K., and Hoffmann, V., 1999. Magnetic domain structure of multidomain magnetite as a function of temperature: observation by Kerr microscopy. Physics of the Earth and Planetary Interiors, 112: 55–80.CrossRefGoogle Scholar
  3. Appel, E., and Soffel, H.C., 1984. Model for the domain state of Ti‐rich titanomagnetites. Geophysical Research Letters, 11: 189–192.Google Scholar
  4. Appel, E., and Soffel, H.C., 1985. Domain state of Ti‐rich titanomagnetites deduced from domain structure observations and susceptibility measurements. Journal of Geophysics, 56: 121–132.Google Scholar
  5. Becker, J.J., 1969. Observations of magnetization reversal in cobalt‐rare‐earth particles. IEEE Transactions on Magnetics, MAG‐5: 211–214.CrossRefGoogle Scholar
  6. Becker, J.J., 1971a. Magnetization discontinuities in cobalt‐rare‐earth particles. Journal of Applied Physics, 42: 1537–1538.CrossRefGoogle Scholar
  7. Becker, J.J., 1971b. Interpretation of hysteresis loops of cobalt‐rare‐earths. IEEE Transactions on Magnetics, MAG‐7: 644–647.CrossRefGoogle Scholar
  8. Becker, J.J., 1976. Reversal mechanism in copper‐modified cobalt‐rare‐earths. IEEE Transactions on Magnetics, MAG‐12: 965–967.CrossRefGoogle Scholar
  9. Bogdanov, A.K., and Ya. Vlasov, A., 1965. Domain structure in a single crystal of magnetite. (English trans.). Izvestiya Akademii Nauk, SSSR, Earth Physics, series no. 1., 28–32.Google Scholar
  10. Bogdanov, A.A., and Ya Vlasov, A., 1966. The domain structure of magnetite particles. (English trans.), Izvestiya Akademii Nauk, SSSR, Physics, Solid Earth, 9: 577–581.Google Scholar
  11. Boyd, J.R., Fuller, M., and Halgedahl, S., 1984. Domain wall nucleation as a controlling factor in the behaviour of fine magnetic particles in rocks. Geophysical Research Letters, 11: 193–196.Google Scholar
  12. Brown, W.F., 1963. Micromagnetics. New York: John Wiley, 143 pp.Google Scholar
  13. Chikazumi, S., 1964. Physics of Magnetism. New York: John Wiley, 664 pp.Google Scholar
  14. Cullity, B.D., 1972. Introduction to Magnetic Materials. Reading, MA, Addison‐Wesley, 666 pp.Google Scholar
  15. Dunlop, D.J., and Özdemir, O., 1997. Rock Magnetism: Fundamentals and Frontiers. UK, Cambridge: Cambridge University Press, 573 pp.Google Scholar
  16. Dunlop, D.J., Newell, A.J., and Enkin, R.J., 1994. Transdomain thermoremanent magnetization. Journal of Geophysical Research, 99: 19,741–19,755.Google Scholar
  17. Fabian, K., Kirchner, A.,Williams, W., Heider, F., and Leibl, T., Three‐dimensional micromagnetic calculations for magnetite using FFT. Geophysical Journal International, 124: 89–104.Google Scholar
  18. Foss, S., Moskowitz, B., and Walsh, B., 1996. Localized micromagnetic perturbation of domain walls in magnetite using a magnetic force microscope. Applied Physics Letters, 69: 3426–3428.CrossRefGoogle Scholar
  19. Foss, S., Moskowitz, B.M., Proksch, R., and Dahlberg, E.D., Domain wall structures in single‐crystal magnetite investigated by magnetic force microscopy. Journal of Geophysical Research, 103: 30,551–30,560.Google Scholar
  20. Frandson, C., Stipp, S.L.S., McEnroe, S.A., Madsen, M.B., and Knudsen, J.M., 2004. Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Physics of the Earth and Planetary Interiors, 141: 121–129.CrossRefGoogle Scholar
  21. Fukuma, K., and Dunlop, D.J., Grain‐size dependence of two‐dimensional micromagnetic structures for pseudo‐single‐domain magnetite (0.2–2.5 μm). Geophysical Journal International, 134: 843–848.Google Scholar
  22. Geiß, C.E., Heider, F., and Soffel, H.C., Magnetic domain observations on magnetite and titanomaghemite grains (0.5–10 μm). Geophysical Journal International, 124: 75–88.Google Scholar
  23. Halgedahl, S.L., 1987. Domain pattern observations in rock magnetism: progress and problems. Physics of the Earth and Planetary Interiors, 46: 127–163.CrossRefGoogle Scholar
  24. Halgedahl, S.L., 1991. Magnetic domain patterns observed on synthetic Ti‐rich titanomagnetite as a function of temperature and in states of thermoremanent magnetization. Journal of Geophysical Research, 96: 3943–3972.Google Scholar
  25. Halgedahl, S.L., 1995. Bitter patterns versus hysteresis behavior in small single particles of hematite. Journal of Geophysical Research, 100: 353–364.CrossRefGoogle Scholar
  26. Halgedahl, S.L., 1998. Barkhausen jumps in larger versus small platelets of natural hematite. Journal of Geophysical Research, 103: 30,575–30,589.CrossRefGoogle Scholar
  27. Halgedahl, S., and Fuller, M., 1980. Magnetic domain observations of nucleation processes in fine particles of intermediate titanomagnetite. Nature, 288: 70–72.CrossRefGoogle Scholar
  28. Halgedahl, S.L., and Fuller, M., 1981. The dependence of magnetic domain structure upon magnetization state in polycrystalline pyrrhotite. Physics of the Earth and Planetary Interiors, 26: 93–97.CrossRefGoogle Scholar
  29. Halgedahl, S., and Fuller, M., 1983. The dependence of magnetic domain structure upon magnetization state with emphasis upon nucleation as a mechanism for pseudo‐single domain behavior. Journal of Geophysical Research, 88: 6505–6522.Google Scholar
  30. Halgedahl, S.L., and Ye, J., 2000. Observed effects of mechanical grain‐size reduction on the domain structure of pyrrhotite. Earth and Planetary Science Letters, 176(3): 457–467.CrossRefGoogle Scholar
  31. Harrison, T.J., Dunin‐Borkowski, R.E., and Putnis, A., 2002. Direct imaging of nanoscale magnetic interactions in minerals. Proceedings of the National Academic Sciences, 99: 16,556–16,561.Google Scholar
  32. Heider, F., 1990. Temperature dependence of domain structure in natural magnetite and its significance for multi‐domain TRM models. Physics of the Earth and Planetary Interiors, 65: 54–61.CrossRefGoogle Scholar
  33. Heider, F., and Hoffmann, V., 1992. Magneto‐optical Kerr effect on magnetite crystals with externally applied fields. Earth and Planetary Science Letters, 108: 131–138.CrossRefGoogle Scholar
  34. Heider, F., Halgedahl, S.L., and Dunlop, D.J., 1988. Temperature dependence of magnetic domains in magnetite crystals. Geophysical Research Letters, 15: 499–502.Google Scholar
  35. Heisenberg, W., 1928. Zur Theorie des Ferromagnetismus. Zeitschrift fuer Physik, 49: 619–636.CrossRefGoogle Scholar
  36. Hoffmann, V., Schafer, R., Appel, E., Hubert, A., and Soffel, H., 1987. First domain observations with the magneto‐optical Kerr effect on Ti‐ferrites in rocks and their synthetic equivalents. Journal of Magnetism and Magnetic Materials, 71: 90–94.CrossRefGoogle Scholar
  37. Kittel, C., 1949. Physical theory of ferromagnetic domains. Reviews of Modern Physics, 21: 541–583.CrossRefGoogle Scholar
  38. Metcalf, M., and Fuller, M., 1987a. Magnetic remanence measurements of single particles and the nature of domain patterns in titanomagnetites. Geophysical Research Letters, 14: 1207–1210.Google Scholar
  39. Metcalf, M., and Fuller, M., 1987b. Domain observations of titanomagnetites during hysteresis at elevated temperatures and thermal cycling. Physics of the Earth and Planetary Interiors, 46: 120–126.CrossRefGoogle Scholar
  40. Metcalf, M., and Fuller, M., 1988. A synthetic TRM induction curve for fine particles generated from domain observations. Geophysical Research Letters, 15: 503–506.Google Scholar
  41. Moloni, K., Moskowitz, B.M., and Dahlberg, E.D., 1996. Domain structures in single crystal magnetite below the Verwey transition as observed with a low‐temperature magnetic force microscope. Geophysical Research Letters, 23: 2851–2854.CrossRefGoogle Scholar
  42. Moon, T., and Merrill, R.T., 1984. The magnetic moments of non‐uniformly magnetized grains. Physics of the Earth and Planetary Interiors, 34: 186–194.CrossRefGoogle Scholar
  43. Moon, T.S., and Merrill, R.T., 1985. Nucleation theory and domain states in multidomain magnetic material. Physics of the Earth and Planetary Interiors, 37: 214–222.CrossRefGoogle Scholar
  44. Moskowitz, B.M., and Banerjee, S.K., 1979. Grain size limits for pseudosingle domain behavior in magnetite: implications for paleomagnetism. IEEE Transactions on Magnetics, MAG15: 1241–1246.CrossRefGoogle Scholar
  45. Moskowitz, B.M., and Halgedahl, S.L., Theoretical temperature and grain‐size dependence of domain state in x = 0.6 titanomagnetite. Journal of Geophysical Research, 92: 10,667–10,682.Google Scholar
  46. Moskowitz, B.M., Halgedahl, S.L., and Lawson, C.A., 1988. Magnetic domains on unpolished and polished surfaces of titanium‐rich titanomagnetite. Journal of Geophysical Research, 93: 3372–3386.Google Scholar
  47. Muxworthy, A.R., and Williams, W., Micromagnetic calculations of hysteresis as a function of temperature in pseudo‐single domain magnetite. Geophysical Research Letters, 26: 1065–1068.Google Scholar
  48. Newell, A.J., Dunlop, D.J., and Williams, W., 1993. A two‐dimensional micromagnetic model of magnetization and fields in magnetite. Journal of Geophysical Research, 98: 9533–9549.Google Scholar
  49. Özdemir, O., and Dunlop, D.J., 1993. Magnetic domain structures on a natural single crystal of magnetite. Geophysical Research Letters, 20: 1835–1838.Google Scholar
  50. Özdemir, O., and Dunlop, D.J., 1997. Effect of crystal defects and internal stress on the domain structure and magnetic properties of magnetite. Journal of Geophysical Research, 102: 20, 211–20,224.Google Scholar
  51. Özdemir, O., Xu, S., and Dunlop, D.J., 1995. Closure domains in magnetite. Journal of Geophysical Research, 100: 2193–2209.CrossRefGoogle Scholar
  52. Pokhil, T.G., and Moskowitz, B.M., 1996. Magnetic force microscope study of domain wall structures in magnetite. Journal of Applied Physics, 79: 6064–6066.CrossRefGoogle Scholar
  53. Pokhil, T.G., and Moskowitz, B.M., 1997. Magnetic domains and domain walls in pseudo‐single‐domain magnetite studied with magnetic force microscopy. Journal of Geophysical Research, 102: 22,681–22,694.Google Scholar
  54. Proksch, R.B., Foss, S., and Dahlberg, E.D., 1994. High resolution magnetic force microscopy of domain wall fine structures. IEEE Transactions on Magnetics, 30: 4467–4472.CrossRefGoogle Scholar
  55. Rhodes, P., and Rowlands, G., 1954. Demagnetizing energies of uniformly magnetised rectangular blocks. Proceedings of the Leeds Philosophical and Literary Society, Science Section, 6: 191–210.Google Scholar
  56. Smith, P.P.K., 1980. The application of Lorentz electron microscopy to the study of rock magnetism. Institute of Physics Conference Series, 52: 125–128.Google Scholar
  57. Soffel, H., 1971. The single‐domain‐multidomain transition in natural intermediate titanomagnetites. Zeitschrift fuer Geophysik, 37: 451–470.Google Scholar
  58. Soffel, H.C., 1977. Domain structure of titanomagnetites and its variation with temperature. Journal of Geomagnetism and Geoelectricity, 29: 277–284.Google Scholar
  59. Soffel, H., 1977. Pseudo‐single‐domain effects and single‐domain multidomain transition in natural pyrrhotite deduced from domain structure observations. Journal of Geophysics, 42: 351–359.Google Scholar
  60. Soffel, H.C., Aumuller, C., Hoffmann, V., and Appel, E., 1990. Three‐dimensional domain observations of magnetite and titanomagnetites using the dried colloid SEM method. Physics of the Earth and Planetary Interiors, 65: 43–53.CrossRefGoogle Scholar
  61. Stacey, F.D., and Banerjee, S.K., 1974. The Physical Principles of Rock Magnetism. Amsterdam: Elsevier, 195 pp.Google Scholar
  62. Szymczak, R., 1968. The magnetic structure of ferromagnetic materials of uniaxial structure. Electronics Technology, 1: 5–43.Google Scholar
  63. Weiss, P., 1907. L'hypothèse du champ moléculaire et la propriété ferromagnétique. Journal of Physique, 6: 661–690.Google Scholar
  64. Williams, W., and Dunlop, D.J., 1989. Three‐dimensional micromagnetic modelling of ferromagnetic domain structure. Nature, 337: 634–637.CrossRefGoogle Scholar
  65. Williams, W., and Dunlop, D.J., 1990. Some effects of grain shape and varying external magnetic fields on the magnetic structure of small grains of magnetite. Physics of the Earth and Planetary Interiors, 65: 1–14.CrossRefGoogle Scholar
  66. Williams, W., and Dunlop, D.J., 1995. Simulation of magnetic hysteresis in pseudo‐single‐domain grains of magnetite. Journal of Geophysical Research, 100: 3859–3871.CrossRefGoogle Scholar
  67. Williams, W., and Wright, T.M., 1998. High‐resolution micromagnetic models of fine grains of magnetite. Journal of Geophysical Research, 103: 30,537–30,550.Google Scholar
  68. Williams, W., Hoffmann, V., Heider, F., Goddenhenreich, T., and Heiden, C., 1992. Magnetic force microscopy imaging of domain walls in magnetite. Geophysical Journal International, 111: 417–423.CrossRefGoogle Scholar
  69. Worm, H.‐U., and Markert, H., 1987. The preparation of dispersed titanomagnetite particles by the glass‐ceramic method. Physics of the Earth and Planetary Interiors, 46: 263–270.CrossRefGoogle Scholar
  70. Worm, H.‐U., Ryan, P.J., and Banerjee, S.K., 1991. Domain size, closure domains, and the importance of magnetostriction in magnetite. Earth and Planetary Science Letters, 102: 71–78.CrossRefGoogle Scholar
  71. Xu, S., Dunlop, D.J., and Newell, A.J., 1994. Micromagnetic modelling of two‐dimensional domain structures in magnetite. Journal of Geophysical Research, 99: 9035–9044.CrossRefGoogle Scholar
  72. Ye, J., and Halgedahl, S.L., 2000. Theoretical effects of mechanical grain‐size reduction on GEM domain states in pyrrhotite. Earth and Planetary Science Letters, 178: 73–85.CrossRefGoogle Scholar
  73. Ye, J., and Merrill, R.T., 1995. The use of renormalization group theory to explain the large variation of domain states observed in titanomagnetites and implications for paleomagnetism. Journal of Geophysical Research, 100: 17,899–17,907.Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Susan L. Halgedahl

There are no affiliations available