Skip to main content

Carbon Cycle

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Historical background of the carbon cycle

The discovery that plants use carbon dioxide for growth in sunlight and return it to the atmosphere in darkness must have been the first scientific observation of part of the carbon cycle. The discovery of carbon dioxide as a gas that forms by fermentation and burning of charcoal, under the name of spiritus silvestris, is attributed to Jan Baptista (or Baptist) van Helmont, a man of medicine, alchemy, and early chemistry in the then Spanish Netherlands, in the first half of the 1600s (e.g., Graham, 1974). Presentation of the first general scheme of the carbon and nitrogen cycles was attributed to the French chemist, Jean Baptiste André Dumas, in 1841 (Rankama and Sahama, 1950, p. 535). Dumas (1842) described the cycle of CO2consumption and production by respiration, pointing to the sources of “carbonic acid” in the air and soil where it forms from decomposition of manure or organic fertilizers. He also pointed out that the Earth’s primordial...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    ppmv is parts per million by volume. In the atmosphere that is a mixture of ideal gases at the total pressure P = 1 atm, concentrations of individual gases in units of ppmv are also their partial pressures in units of 10−6 atm. CO2 at a concentration of 370 ppmv has a partial pressure 3.70  ×  10−4 atm.

Bibliography

  • Arrhenius, S., 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Phil. Mag., 5th ser., 41, 237–276.

    Google Scholar 

  • Barker, D.S., 1997. Carbonatites. McGraw-Hill Encycl. Sci. Technol., 8th ed., vol. 3, New York, NY: McGraw-Hill, pp. 239–240.

    Google Scholar 

  • Bassham, J.A., 1974. Photosynthesis. Encycl. Brit., Macropaedia, vol. 14, Chicago, IL: University of Chicago Press, pp. 365–373.

    Google Scholar 

  • Berner, R.A., and Canfield, D.L., 1989. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci., 289, 333–361.

    Google Scholar 

  • Berner, R.A., and Kothavala, Z., 2001. Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci., 301, 182–204.

    Google Scholar 

  • Berner, R.A., and Maasch, K.A., 1996. Chemical weathering and controls on atmospheric O2 and CO2: Fundamental principles were enunciated by J.J., Ebelmen, in 1845. Geochim. Cosmochim. Acta, 60, 1633–1637.

    Google Scholar 

  • Clark, I.D., and Fritz, P., 1997. Environmental Isotopes in Hydrology. New York, NY: Lewis Publishers, 328pp.

    Google Scholar 

  • Dumas, J., 1842. Essai de Statique Chimique des Êtres Organisés. 2ème édit. Fortin, Masson, Paris, 4  +  88pp.

    Google Scholar 

  • Friedman, I., and O’Neil, J.R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. In Fleischer, M. (ed.), Data of Geochemistry. 6th ed, U.S. Geol. Survey Prof. Pap. 440–KK.

    Google Scholar 

  • Gaffron, H., 1964. Photosynthesis. Encycl. Brit., vol. 17, Chicago, IL: University of Chicago Press, pp. 855–856B.

    Google Scholar 

  • Graham, L., 1974. Heat. In Encyclopedia Britannica, Macropaedia, vol. 8, pp. 700–706; Micropaedia, vol. 4, p. 1007. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Hayes, J.M., Strauss, H., and Kaufman, A.J., 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chem. Geol., 161, 103–125.

    Google Scholar 

  • Kvenvolden, K.A., 1988. Methane — a major reservoir of carbon on a shallow geosphere? Chem. Geol., 71, 41–51.

    Google Scholar 

  • Kvenvolden, K.A., and Lorenson, T.D., 2001. Global occurrences of natural gas hydrates. In Paull, C.E., and Dillon, W.P. (eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection. AGU Geophys. Monograph Series, vol. 124, pp. 3–18.

    Google Scholar 

  • Li, Y.-H., 2000. A Compendium of Geochemistry: From Solar Nebula to the Human Brain. Princeton, NJ: Princeton University Press, xiv  +  475pp.

    Google Scholar 

  • Locklair, R.E., and Lerman, A., 2005. A model of Phanerozoic cycles of carbon and calcium in the global ocean: Evaluation and constraints on ocean chemistry and input fluxes. Chem. Geol., 217, 113–126.

    Google Scholar 

  • Lotka, A.J., 1925. Elements of Physical Biology. Baltimore, MD: Williams & Wilkins, xxx  +  460pp. Also published as Elements of Mathematical Biology, 1956. New York, NY: Dover, pp. xxx  +  465.

    Google Scholar 

  • Mackenzie, F.T., 2002. Our Changing Planet. Upper Saddle River, NJ: Prentice Hall, xii  +  580pp.

    Google Scholar 

  • Mackenzie, F.T., and Lerman, A., 2006. Carbon in the Geobiosphere. Dordrecht, The Netherlands: Springer xxii  +  402pp.

    Google Scholar 

  • Mackenzie, F.T., and Morse, J.W., 1992. Sedimentary carbonates through Phanerozoic time. Geochim. Cosmochim. Acta, 56, 3281–3295.

    Google Scholar 

  • Meyer, B.S., 1964. Plant Physiology. Encycl. Brit., vol. 18, Chicago, IL: University of Chicago Press, pp. 16–31.

    Google Scholar 

  • Mohr, F., 1875. Geschichte der Erde. 2. Aufl. Bonn, Germany: Verlag Max Cohen & Sohn, xx  +  554pp.

    Google Scholar 

  • Mojzsis, S.J., Arrhenius G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., and Friend, C.R.L., 1996. Evidence for life on Earth by 3800 Myr. Nature, 384, 55–59.

    Google Scholar 

  • Mook, W.G., Bommerson, J.C., and Staverman, W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett., 22, 169–176.

    Google Scholar 

  • O’Leary, M.H., 1988. Carbon isotopes in photosynthesis. Bioscience, 38, 328–335.

    Google Scholar 

  • Poldervaart, A., 1955. Chemistry of the Earth’s surface. In Poldervaart, A. (ed.), Crust of the Earth, Geol. Soc. Am. Spec. Pap., 62, pp. 119–144.

    Google Scholar 

  • Rankama, K., and Sahama, Th.G., 1950. Geochemistry. Chicago, IL: Univ. Chicago Press, xvi  +  912pp.

    Google Scholar 

  • Redfield, A.C., Ketchum, B.H., and Richards, F.A., 1963. The influence of organisms on the composition of seawater. In Hill, M.N. (ed.), The Sea, vol. 2, New York, NY: Wiley, pp. 26–77.

    Google Scholar 

  • Rosing, M.T., 1999. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283, 674–676.

    Google Scholar 

  • Rubey, W.W., 1951. Geologic history of seawater, an attempt to state the problem. Geol. Soc. Am. Bull., 62, 1111–1147.

    Google Scholar 

  • Rubey, W.W., 1955. Development of the hydrosphere and atmosphere, with special reference to probable composition of the early atmosphere. In Poldervaart, A. (ed.), Crust of the Earth, Geological Society of America, Special Paper, vol 62, pp. 631–650.

    Google Scholar 

  • Rubinson, M., and Clayton, R.N., 1969. Carbon-13 fractionation between aragonite and calcite. Geochim. Cosmochim. Acta, 33, 997–1002.

    Google Scholar 

  • Salomons, W., and Mook, W.G., 1986. Isotope geochemistry of carbonates in the weathering zone. In Fritz, P., and Fontes, J. Ch. (eds.), Handbook of Environmental Isotope Geochemistry, vol. 2, The Terrestrial Environment, Amsterdam, The Netherlands: Elsevier, pp. 239–269.

    Google Scholar 

  • Thode, H.G., Shima, M., Rees, C.E., and Krishnamurty, K.V., 1965. Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions. Can. J. Chem., 43, 582–595.

    Google Scholar 

  • Urey, H.C., 1952. The Planets: Their Origin and Development. New Haven, Conn.: Yale University Press, xvii+245pp.

    Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol., 161, 59–88.

    Google Scholar 

  • Ver, L.M.B., Mackenzie, F.T., and Lerman, A., 1999. Biogeochemical responses of the carbon cycle to natural and human perturbation: Past, present, and future. Am. J. Sci., 299, 762–801.

    Google Scholar 

  • Vogel, J.C., Grootes, P.M., and Mook, W.G., 1970. Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschr. Physik, 230, 225–238.

    Google Scholar 

  • Walker, J.C.G., 1977. Evolution of the Atmosphere. New York, NY: Macmillan Publishing, xiv+318pp.

    Google Scholar 

  • Wallmann, K., 2004. Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record. Geochem., Geophys. Geosyst. doi: 10.1029/2003GC000683.

    Google Scholar 

  • Whitmarsh, J., and Govindjee, 1995. The photosynthetic process. In Singhal, G.S., Renger, G., Soppory, S.K., Irrgang, K.-D., and Govindjee (eds.), Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Dordrecht, The Netherlands: Kluwer Academic, pp. 11–51.

    Google Scholar 

  • Wilkinson, B.H., and Algeo, T.J., 1989. Sedimentary carbonates record of calcium and magnesium cycling. Am. J. Sci., 289, 1158–1194.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Lerman, A. (2009). Carbon Cycle. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_28

Download citation

Publish with us

Policies and ethics