Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 382 Accesses

Overview

Venus and Earth are generally regarded as sister planets because Venus is the planet with mass, size, and mean density closest to that of the Earth (see Table A6). Cosmochemical and geochemical models also suggest that Venus’ bulk composition is similar to that of the Earth (Lodders and Fegley, 1998; Tables 5.8 and 5.9). Despite these broad similarities, Venus’ atmosphere is dramatically different from that of the Earth. These differences are primarily due to Venus’ depletion in water relative to the Earth. As discussed below, Venus may either have formed “dry,” or may have formed “wet” and subsequently lost most of its water. A choice between these two alternatives is impossible at present and there are arguments for and against both models (Lewis and Prinn, 1984; Yung and DeMore, 1999).

Table A6 Some properties of Venus and Earth (after Lodders and Fegley, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ahrens, T.J., 1993. Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci., 21, 525–555.

    Article  Google Scholar 

  • Barsukov, V.L., Basilevsky, A.T., Volkov, V.P., and Zharkov, V.N. (eds.), 1992. Venus Geology, Geochemistry, and Geophysics. Tucson, AZ: University of Arizona Press, 421pp.

    Google Scholar 

  • Bézard, B., DeBergh, C., Fegley, B., Maillard, J.P., Crisp, D., Owen, T., Pollack, J.B., and Grinspoon, D., 1993. The abundance of sulfur dioxide below the clouds of Venus. Geophys. Res. Lett., 20, 1587–1590.

    Article  Google Scholar 

  • Bougher, S.W., Hunten, D.M., and Phillips, R.J. (eds.), 1997. Venus II. Tucson, AZ: University of Arizona Press, 1362pp.

    Google Scholar 

  • Brown, H., 1949. Rare gases and the formation of the Earth’s atmosphere. In Kuiper, G.P. (ed.), The Atmospheres of the Earth and Planets. Chicago, IL: University of Chicago Press, pp. 260–268.

    Google Scholar 

  • Bullock, M.A., and Grinspoon, D.H., 2001. The recent evolution of climate on Venus. Icarus, 150, 19–37.

    Article  Google Scholar 

  • Cameron, A.G.W., 1995. The first ten million years in the solar nebula. Meteoritics, 30, 133–161.

    Google Scholar 

  • Chamberlain, J.W., and Hunten, D.M., 1987. Theory of Planetary Atmospheres. San Diego, CA: Academic Press, 481pp.

    Google Scholar 

  • Charlson, R.J., Anderson, T.L., and McDuff, R.E., 1992. The sulfur cycle. In Butcher, S.S., Charlson, R.J., Orians, G.H., and Wolfe, G.V. (eds.), Global Biogeochemical Cycles. San Diego, CA: Academic Press, pp. 285–300.

    Chapter  Google Scholar 

  • Donahue, T.M., Grinspoon, D.H., Hartle, R.E., and Hodges, R.R. Jr., 1997. Ion/neutral escape of hydrogen and deuterium: Evolution of water. In Bougher, S.W., Hunten, D.M., and Phillips, R.J. (eds)., Venus II, Tucson, AZ: University of Arizona Press, pp. 385–414.

    Google Scholar 

  • Fegley, B. Jr., 2000. Kinetics of gas-grain reactions in the solar nebula. Space Sci. Rev., 92, 177–200.

    Article  Google Scholar 

  • Fegley, B. Jr., 2004. Venus, In Davis, A.M. (ed)., Meteorites, Comets, and Planets. Holland, H.D., and Turekian, K.K. (eds.), Treatise on Geochemistry, vol. 1, Oxford, England: Elsevier-Pergamon, pp. 487–507.

    Google Scholar 

  • Hunten, D.M., Colin, L., Donahue, T.M., and Moroz, V.I. (eds.), 1983. Venus. Tucson, AZ: University of Arizona Press, 1143pp.

    Google Scholar 

  • Ingersoll, A.P., 1969. The runaway greenhouse: A history of water on Venus. J. Atmos. Sci., 26, 1191–1198.

    Article  Google Scholar 

  • Irvine, W.M., Schloerb, F.P., Crovisier, J., Fegley, B. Jr., and Mumma, M.J., 2000. Comets: A link between interstellar and nebular chemistry. In Mannings, V., Boss, A.P., and Russell, S.S. (eds.), Protostars and Planets IV. Tucson, AZ: University of Arizona Press, pp. 1159–1200.

    Google Scholar 

  • Johnson, N.M., and Fegley, B. Jr., 2003. Tremolite decomposition on Venus II. Products, kinetics, mechanism. Icarus, 164, 317–333.

    Article  Google Scholar 

  • Kargel, J.S., Komatsu, G., Baker, V.R., and Strom, R.G., 1993. The volcanology of Venera and VEGA landing sites and the geochemistry of Venus. Icarus, 103, 253–275.

    Article  Google Scholar 

  • Kargel, J.S., Kirk, R.L., Fegley, B. Jr., and Treiman, A., 1994. Carbonate-sulfate volcanism on Venus? Icarus, 112, 219–252.

    Article  Google Scholar 

  • Kaula, W.M., 1999. Constraints on Venus evolution from radiogenic argon. Icarus, 139, 32–39.

    Article  Google Scholar 

  • Kerridge, J., and Matthews, M.S. (eds.), 1988. Meteorites and the Early Solar System. Tucson, AZ: University of Arizona Press, 1269pp.

    Google Scholar 

  • Kleine, T., Münker, C., Mezger, K., and Palme, H., 2002. Rapid accretion and early core formation on asteroids and terrestrial planets from Hf-W chronometry. Nature, 418, 952–955.

    Article  Google Scholar 

  • Krasnopolsky, V.A., 1986. Photochemistry of the Atmospheres of Mars and Venus. Berlin, Germany: Springer-Verlag, 334pp.

    Google Scholar 

  • Lewis, J.S., 1974. Volatile element influx on Venus from cometary impacts. Earth Planet. Sci. Lett., 22, 239–244.

    Article  Google Scholar 

  • Lewis, J.S., and Prinn, R.G., 1984. Planets and Their Atmospheres: Origin and Evolution. New York, NY: Academic Press, 470pp.

    Google Scholar 

  • Lodders, K., 2003. Solar system abundances and condensation temperatures of the elements. Astrophys. J., 591, 1220–1247.

    Article  Google Scholar 

  • Lodders, K., and Fegley, B. Jr., 1997. An oxygen isotope model for the composition of Mars. Icarus, 126, 373–394.

    Article  Google Scholar 

  • Lodders, K., and Fegley, B. Jr., 1998. The Planetary Scientist’s Companion. New York, NY: Oxford University Press, 371pp.

    Google Scholar 

  • Matsui, T., and Abe, Y., 1986. Impact-induced atmospheres and oceans on Earth and Venus. Nature, 322, 526–528.

    Article  Google Scholar 

  • Morgan, J.W., and Anders, E., 1980. Chemical composition of the Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 6973–6977.

    Article  Google Scholar 

  • Ozima, M., and Podosek, F.A., 2002. Noble Gas Geochemistry, 2nd ed. Cambridge, England: Cambridge University Press, 286pp.

    Google Scholar 

  • Pepin, R.O., and Porcelli, D., 2002. Origin of noble gases in the terrestrial planets. In Porcelli, D., Ballentine, C.J., and Wieler, R. (eds.), Noble Gases in Geochemistry and Cosmochemistry, Washington, D.C.: Mineralogical Society of America, pp. 191–246.

    Google Scholar 

  • Pollack, J.B., 1991. Kuiper Prize Lecture: Present and past climates of the terrestrial planets. Icarus, 91, 173–198.

    Article  Google Scholar 

  • Prinn, R.G., and Fegley, B. Jr., 1987. The atmospheres of Venus, Earth, and Mars: A critical comparison. Annu. Rev. Earth Planet. Sci., 15, 171–212.

    Article  Google Scholar 

  • Rasool, S.I., and DeBergh, C., 1970. The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature, 226, 1037–1039.

    Article  Google Scholar 

  • Shirley, J.H., and Fairbridge, R.W. (eds.), 1997 Encyclopedia of Planetary Sciences. London, England: Chapman & Hall, 990 pp.

    Google Scholar 

  • von Zahn, V., Kumar, S., Niemann, H., and Prinn, R., 1983. Composition of the Venus atmosphere. In Hunten, D.M., Colin, L., Donahue, T.M., and Moroz, V.I. (eds.), Venus. Tucson: University of Arizona Press, pp. 299–430.

    Google Scholar 

  • Warneck, P., 1988. Chemistry of the Natural Atmosphere. San Diego, CA: Academic Press, 757pp.

    Google Scholar 

  • Weidenschilling, S.J., 1976. Accretion of the terrestrial planets II. Icarus, 27, 161–170.

    Article  Google Scholar 

  • Wetherill, G.W., 1980. Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys., 18, 77–113.

    Article  Google Scholar 

  • Yin, Q., Jacobsen, S.B., Yamashita, K., Blichert-Toft, J., Télouk, P., and Albarède, F., 2002. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418, 949–952.

    Article  Google Scholar 

  • Yung, Y.L., and DeMore, W.B., 1999. Photochemistry of Planetary Atmospheres. New York, NY: Oxford University Press, 456pp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Fegley, B. (2009). Atmospheric Evolution, Venus. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_18

Download citation

Publish with us

Policies and ethics