Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

Ocean Paleotemperatures

  • Mara Weinelt
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_159

Ocean paleotemperatures are the principal characteristics of past ocean scenarios. Over geological time, ocean temperature patterns underwent large changes, responding on long timescales (× 106 yr) to different plate tectonical configurations, favoring either circum-equatorial flow and promoting a generally warmer ocean, or circum-polar flow with steep low-to-high latitude temperature gradients. On shorter timescales (× 104–105 yr), ocean temperatures respond to insolation changes controlled by Earth orbital parameters which determine the amount of radiation the Earth’s surface receives. High-amplitude, short-term temperature fluctuations are superimposed on decadal-to-millennial time scales and match the short-term temperature fluctuations recorded in Greenland ice cores during glacial times. This is a recent discovery that has immediately focused interest in climate research because of the potential analogy to human-induced climate change.

Because ocean temperatures are a key...

This is a preview of subscription content, log in to check access.


  1. Bé, A.W.H., 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera (chapter 1). In Ramsay, A.T.S. (ed.), Oceanic Micropaleontology, vol. 1. London: Academic Press, pp. 1–100.Google Scholar
  2. Bradshaw, J.S., 1959. Ecology of living planktonic foraminifera in the North and Equatorial Pacific Ocean. Cushman Found. Foramniferal Res. Contr., 10, 25–64.Google Scholar
  3. Brassell, S.C., and Dumitrescu, M., (2003). Alkenones in early Aptian organic-rich sediments from Shatsky Rise, ODP Leg 198. Geophys. Res. Abstr., 5, 13106.Google Scholar
  4. Brassell, S.C., Eglington, J., Marlowe, I.T., Pflaumann, U., and Sarnthein, M., 1986. Molecular stratigraphy: A new tool for climatic assessment. Nature, 320, 129–133.Google Scholar
  5. Clark, F.W., and Wheeler, W.C., 1922. The inorganic constituents of marine invertebrates. US Geological Survey Professional Paper 124, 55pp.Google Scholar
  6. CLIMAP, 1981. Seasonal reconstructions of the Earth’s surface at the last glacial maximum. The Geological Society of America Map and Chart Series MC–36.Google Scholar
  7. Cronblad, H.G., and Malmgren, B.A., 1981. Climatically controlled variation of Sr and in Quaternary planktonic foraminifera. Nature, 291, 61–64.Google Scholar
  8. Cronin, T.M., Raymo, M.E., and Kyle, K.P., (1996). Pliocene (3.2–2.4 Ma) ostracode faunal cycles and deep ocean circulation, North Atlantic ocean. Geology, 24, 695–698Google Scholar
  9. Cuvier, M., 1817. Essay on the theory of the Earth. Edinburgh, New York: Arno Press (reprinted 1978).Google Scholar
  10. Dwyer, G.S., Cronin, T.M., Baker, P.A., Raymo, M.E., Buzas, J.S., and Correge, T., 1995. North Atlantic deepwater temperature change during Late Pliocene and Late Quaternary Climate cycles. Science, 270, 1347–1351.Google Scholar
  11. Emiliani, C., 1955. Pleistocene temperatures. J. Geol., 63, 538–578.Google Scholar
  12. Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C., 1953. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull., 64, 1315–1325.Google Scholar
  13. Erez, J., and Luz, B., 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochim. Cosmochim. Acta, 47, 1025–1031.Google Scholar
  14. Ganssen, G.M., and Kroon, D., 2000. The isotopic signature of planktonic foraminifera from NE Atlantic surface sediments: implications for the reconstruction of past oceanic conditions. J. Geol. Soc., London, 157, 693–699.Google Scholar
  15. Hemleben, C., Spindler, M., and Anderson, O.R., 1989. Modern Planktonic Foraminifera. New York: Springer, 363pp.Google Scholar
  16. Herbert, T.D., 2001. Review of alkenone calibrations (culture, water column, and sediments). Geochem. Geophys. Geosyst., 2(2), doi: 2000GC000055.Google Scholar
  17. Herbert, T.D., and Schuffert, J.D., 1998. Alkenone unsaturation estimates of Late Miocene through Late Pliocene sea surface temperatures at Site 958. In Proceedings of the Ocean Drilling Program, Scientific Results, 159T, 17–21.Google Scholar
  18. Hooper, P.W., and Funnell, 1986. Palaeoceanographic significance of Late Miocene to early Pliocene planktonic foraminifers at DSDP Site 609. Initial Reports of the Deep Sea Drilling Project, 94, 925–934.Google Scholar
  19. Hutson, W.H., 1977. Transfer functions under no-analog conditions: Experiments with Indian Ocean planktonic foraminifera, Quaternary Res., 8, 355–367.Google Scholar
  20. Hutton, J., 1795. Theory of the Earth. Edinburgh: Creech, vol. 1: 620pp, vol. 2: 576pp.Google Scholar
  21. Imbrie, J., and Kipp, N.G., 1971. A new micropaleontological method quantitative paleoclimatology: Application to a late Pleistocene Caribbean core. In Turekian, K. (ed.), The Late Cenozoic Ice Ages. New Haven: Yale University Press, pp. 71–181.Google Scholar
  22. Juillet-Leclerc, A.D., and Labeyrie, L.D., 1986. Temperature dependance of the oxygen isotope fractionation between diatom silica and water. Earth Planet. Sci. Lett., 84, 69–74.Google Scholar
  23. Lea, D.W., Mashiotta, T.A., and Spero, H.J., 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim. Cosmochim. Acta, 63, 2369–2379.Google Scholar
  24. Lear, C., Elderfield, H., and Wilson, P.A., 2000. Cenozoic deep-sea temperatures and global ice-volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287, 269–272.Google Scholar
  25. Malmgren, B.A., Kucera, M., Nyberg, J., and Waelbroeck, C., 2001. Comparison of statistical and artificial neural network techniques for estimating past sea-surface temperatures from planktonic foraminifer census data. Paleoceanography, 16, 520–530.Google Scholar
  26. Marlowe, I.T., Brassell, S.C., Eglinton, G., and Green, J.C., 1984. Long-chain unsaturated ketones and esters in living algae and marine sediments. Org. Geochem., 6, 135–141.Google Scholar
  27. Martin, P.A., Lea, D.W., Rosenthal, Y., Shackleton, N.J., Sarnthein, M., and Papenfuß, T., 2002. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth Planet. Sci. Lett., 198, 193–209.Google Scholar
  28. Müller, P.J., Kirst, G., Ruhland, G., von Storch, I., and Rosell-Melé, A., 1998. Calibration of the alkenone paleotemperature index Uk’37 based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta, 62, 1757–1772.Google Scholar
  29. Nägler, T.F., Eisenhauer, A., Müller, A., Hemleben, C., and Kramers, J., 2000. The δ 44Ca temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochem., Geophys., Geosys., 1, doi: 2000GC000091.Google Scholar
  30. Nürnberg, D., Bijma, J., and Hemleben, C., 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta, 60, 803–814.Google Scholar
  31. Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J., and Hall, M.A., 2001. Warm tropical sea surface temperatures in the late Cretaceous and Eocene epochs. Nature, 413, 481–487.Google Scholar
  32. Pflaumann, U., Duprat, J., Pujol, C., and Labeyrie, L.D., 1996. A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments, Paleoceanography, 11, 15–35.Google Scholar
  33. Pflaumann, U., Sarnthein, M., Chapman, M., Duprat, J., Huels, M., Kiefer, T., Maslin, M., Schulz, H., van Kreveld, S., Vogelsang, E., and Weinelt, M., 2003. The Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP-2000. Paleoceanography, 18, 1065.Google Scholar
  34. Phleger, F.B., Parker, F.L., and Peirson, J.F., 1953. North Atlantic core foraminifera. Report of the Swedish Deep-Sea Expedition, 1947–1948, 7(1), 3–122.Google Scholar
  35. Prahl, F.G., and Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature, 330, 367–369.Google Scholar
  36. Prahl, F.G., Muehlhausen, L.A., and Zahnle, D.L., 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta, 52, 2303–2310.Google Scholar
  37. Prahl, F.G., Collier, R.B., Dymond, J., Lyle, M., and Sparrow, M.A., 1993. A biomarker perspective on Prymnesiophyte productivity in the Northeast Pacific Ocean. Deep Sea Res. I, 40, 2071–2076.Google Scholar
  38. Shackleton, N.J., 1967. Oxygen isotope analysis and Pleistocene temperatures re-assessed. Nature, 215, 15–17.Google Scholar
  39. Shackleton, N.J., 1974. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial. Cent. Nat. Rech. Colloq. Int., 219, 203–209.Google Scholar
  40. Shemesh, A., Charles, C.D., and Fairbanks, R.G., 1992. Oxygen isotopes in biogenic silica – global changes in ocean temperature and isotopic composition. Science, 256, 1434–1436.Google Scholar
  41. Urey, H.C, 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc., 562–581.Google Scholar
  42. Waelbroeck, C., Labeyrie, L., Duplessy, J.-C., Guiot, J., Labracherie, M., Leclaire, H., and Duprat, J., 1998. Improving past surface temperature estimates based on planktonic fossil faunas. Paleoceanography, 13, 272–282.Google Scholar
  43. Wang, L., 1994. Sea surface temperature history of the low latitude western Pacific during the last 5.3 million years. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 379–436.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mara Weinelt

There are no affiliations available