Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

North Atlantic Deep Water and Climate Change

  • Thomas M. MarchittoJr.
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_152

Modern North Atlantic deep water

Together, the atmosphere and oceans transport ∼5–6 PW (PW = 1015 W) of heat away from the tropics toward each pole in response to the latitudinal imbalance between incoming solar and outgoing long-wave radiation. In the Atlantic Ocean, net ocean heat transport is northward in both hemispheres, with a maximum of ∼1.3 PW across northern middle latitudes (Ganachaud and Wunsch, 2000). This transport is dominated by the meridional overturning circulation, which transforms warm surface currents (moving predominately northward) into cold deep waters (moving predominately southward). The main product of this transformation is North Atlantic Deep Water (NADW), which forms poleward of 50° N and fills much of the Atlantic between ∼1 and 4 km depth below sea surface. NADW formation is thus associated with the release of a great deal of heat to the high northern latitude atmosphere.

Modern NADW is ventilated in two main regions of wintertime deep convection: the...
This is a preview of subscription content, log in to check access.


  1. Adkins, J.F., McIntyre, K., and Schrag, D.P., 2002. The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298, 1769–1773.Google Scholar
  2. Alley, R.B., Anandakrishnan, S., and Jung, P., 2001. Stochastic resonance in the North Atlantic. Paleoceanography, 16, 190–198.Google Scholar
  3. Boyle, E.A., 1992. Cadmium and δ13C paleochemical ocean distributions during the Stage 2 glacial maximum. Annu. Rev. Earth Planet. Sci., 20, 245–287.Google Scholar
  4. Boyle, E.A., 2000. Is ocean thermohaline circulation linked to abrupt stadial/interstadial transitions? Quaternary Sci. Rev., 19, 255–272.Google Scholar
  5. Boyle, E.A., and Keigwin, L.D., 1987. North Atlantic thermohaline circulation during the last 20,000 years linked to high latitude surface temperature. Nature, 330, 35–40.Google Scholar
  6. Broecker, W.S., Peteet, D.M., and Rind, D., 1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315, 21–25.Google Scholar
  7. Curry, W.B., and Oppo, D.W., 2005. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the Western Atlantic Ocean. Paleoceanography, 20(1), PA1017 (doi:10.1029/2004PA001021).Google Scholar
  8. Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., and Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.Google Scholar
  9. Davies, R., Cartwright, J., Pike, J., and Line, C., 2001. Early Oligocene initiation of North Atlantic Deep water formation. Nature, 410, 917–920.Google Scholar
  10. Dickson, R., Lazier, J., Meincke, J., Rhines, P., and Swift, J., 1996. Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38, 241–296.Google Scholar
  11. Dokken, T.M., and Jansen, E., 1999. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature, 401, 458–461.Google Scholar
  12. Duplessy, J.-C., Shackleton, N.J., Matthews, R.K., Prell, W., Ruddiman, W.F., Caralp, M., and Hendy, C.H., 1984. 13C record of benthic foraminifera in the last interglacial ocean: Implications for the carbon cycle and the global deep water circulation. Quaternary Res., 21, 225–243.Google Scholar
  13. Elliot, M., Labeyrie, L., and Duplessy, J.-C., 2002. Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60-10 ka). Quaternary Sci. Rev., 21, 1153–1165.Google Scholar
  14. Frank, M., Whiteley, N., Kasten, S., Hein, J.R., and O’Nions, K., 2002. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts. Paleoceanography, 17(2), 1022 (doi:10.1029/2000PA000606).Google Scholar
  15. Ganachaud, A., and Wunsch, C., 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453–457.Google Scholar
  16. Ganopolski, A., Rahmstorf, S., Petoukhov, V., and Claussen, M., 1998. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature, 391, 351–356.Google Scholar
  17. Hansen, B., and Østerhus, S., 2000. North Atlantic-Nordic Seas exchanges. Prog. Oceanogr., 45, 109–208.Google Scholar
  18. Hansen, B., Turrell, W.R., and Østerhus, S., 2001. Decreasing overflow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature, 411, 927–930.Google Scholar
  19. Haug, G.H., and Tiedemann, R., 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.Google Scholar
  20. Keigwin, L.D., and Boyle, E.A., 1999. Surface and deep ocean variability in the northern Sargasso Sea during marine isotope stage 3. Paleoceanography, 14, 164–170.Google Scholar
  21. Kroopnick, P.M., 1985. The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res., 32, 57–84.Google Scholar
  22. Lea, D.W., and Boyle, E.A., 1990. Foraminiferal reconstruction of barium distributions in water masses of the glacial oceans. Paleoceanography, 5, 719–742.Google Scholar
  23. Lynch-Stieglitz, J., Curry, W.B., and Slowey, N, 1999. Weaker Gulf Stream in the Florida Straits during the Last Glacial Maximum. Nature, 402, 644–648.Google Scholar
  24. Marchitto, T.M., and Broecker, W.S., 2006. Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosys, 7(12), Q12003 (doi: 10.1029/2006 GC001323).Google Scholar
  25. Marchitto, T.M., Oppo, D.W., and Curry, W.B., 2002. Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic. Paleoceanography, 17(3), 1038, (doi:10.1029/2000PA000598).Google Scholar
  26. Martin, P.A., Lea, D.W., Rosenthal, Y., Shackleton, N.J., Sarnthein, M. and Papenfuss, T., 2002. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth Planet. Sci. Lett., 198, 193–209.Google Scholar
  27. McCartney, M.S., and Talley, L.D., 1984. Warm-to-cold water conversion in the northern North Atlantic Ocean. J. Phys. Oceanogr., 14, 922–935.Google Scholar
  28. McIntyre, K., Ravelo, A.C., and Delaney, M.L., 1999. North Atlantic Intermediate Waters in the late Pliocene to early Pleistocene. Paleoceanography, 14, 324–335.Google Scholar
  29. McManus, J.F., Oppo, D.W., and Cullen, J.L., 1999. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 283, 971–975.Google Scholar
  30. McManus, J.F., Francois, R., Gherardi, J.-M., Keigwin, L.D., and Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to degiacial climate changes. Nature, 428, 834–837.Google Scholar
  31. Oppo, D.W., and Lehman, S.J., 1993. Mid-depth circulation of the subpolar North Atlantic during the Last Glacial Maximum. Science, 259, 1148–1152.Google Scholar
  32. Rahmstorf, S., 2002. Ocean circulation and climate during the past 120,000 years. Nature, 419, 207–214.Google Scholar
  33. Rasmussen, T.L., van Weering, T.C.E., and Labeyrie, L., 1997. Climatic instability, ice sheets and ocean dynamics at high northern latitudes during the last glacial period (58-10 ka BP). Quaternary Sci. Rev., 16, 71–80.Google Scholar
  34. Ravelo, A.C., and Andreasen, D.H., 2000. Enhanced circulation during a warm period. Geophys. Res. Lett., 27, 1001–1004.Google Scholar
  35. Raymo, M.E., Oppo, D.W., and Curry, W., 1997. The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective. Paleoceanography, 12, 546–559.Google Scholar
  36. Raymo, M.E., Ganley, K., Carter, S., Oppo, D.W., and McManus, J.F., 1998. Millennial-scale climate instability during the early Pleistocene epoch. Nature, 392, 699–702.Google Scholar
  37. Robinson, L.F., Adkins, J.F., Keigwin, L.D., Southon J., Fernandez D.P., Wang, S.L., and Scheicer, D.S., 2005. Radiocarbon variability in the western North Atlantic during the last deglaciation. Science, 310, 1469–1473.Google Scholar
  38. Sarnthein, M., Winn, K., Jung, S.J.A., Duplessy, J.-C., Labeyrie, L., Erlenkeuser, H., and Ganssen, G., 1994. Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209–267.Google Scholar
  39. Schmittner, A., Yoshimori, M., and Weaver, A.J., 2002. Instability of glacial climate in a model of the ocean-atmosphere-cryosphere system. Science, 295, 1489–1493.Google Scholar
  40. Toggweiler, J.R., and Bjornsson, H., 2000. Drake Passage and palaeoclimate. J. Quaternary Sci., 15, 319–328.Google Scholar
  41. Weyl, P.K., 1968. The role of the oceans in climatic change: A theory of the ice ages. Meteorol. Mono., 8, 37–62.Google Scholar
  42. Wright, A.K., and Flower, B.P., 2002. Surface and deep ocean circulation in the subpolar North Atlantic during the mid-Pleistocene revolution. Paleoceanography, 17(4), 1068, (doi:10.1029/2002PA000782).Google Scholar
  43. Wright, J.D., and Miller, K.G., 1996. Control of North Atlantic Deep Water circulation by the Greenland-Scotland Ridge. Paleoceanography, 11, 157–170.Google Scholar
  44. Yu, E.-F., Francois, R., and Bacon, M.P., 1996. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379, 689–694.Google Scholar
  45. Zahn, R., and Stüber, A., 2002. Suborbital intermediate water variability inferred from paired benthic foraminiferal Cd/Ca and δ13C in the tropical West Atlantic and linking with North Atlantic climates. Earth Planet. Sci. Lett., 200, 191–205.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Thomas M. MarchittoJr.

There are no affiliations available