Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

Neogene Climates

  • Carin Andersson
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_150

Introduction

The Neogene includes the Miocene and Pliocene epochs, which span 23.03–5.33 and 5.33–1.81 million years ago, respectively Loureus et al., 2004. The Neogene witnessed several major paleoclimatological changes. In general terms, the Neogene went from a warm climatic optimum in the late early Miocene through rapid cooling during the middle Miocene, to the onset of Northern Hemisphere Glaciation (NHG) in the Pliocene.

The Miocene

During the Miocene, especially the middle Miocene, the Earth went through several major changes – both climatic and tectonic. The climatic transition involved gradual cooling, starting about 15 million years ago, and establishment of major ice sheets on Antarctica by 10 million years ago (Zachos et al., 2001), as well as significant changes in global carbon cycling and deep ocean circulation. Initially, researchers argued for minimal continental ice from sometime in the Cretaceous to the Miocene, with a transition to so-called “icehouse” conditions...
This is a preview of subscription content, log in to check access.

Bibliography

  1. Benson, R.H., Rakic-El Bied, K., and Bonaduce, G., 1991. An important current reversal (influx) in the Riftian corridor (Morocco) at the Tortonian-Messinian boundary: The end of the Tethys Ocean. Paleoceanography, 6(1), 164–192.Google Scholar
  2. Berggren, W.A., Kent, D.V., Swisher, C.C., and Aubry, M.-P., 1995. A revised Cenzoic geochronology and chronostratigraphy. In Berggren, W.A., Kent, D.V., Aubry, M.-P., and Hardenbol, J. (eds.), Geochronology, time scales and global stratigraphic correlation, Special Publication No. 54. Tulsa, OK: SEMP, pp. 129–212.Google Scholar
  3. Crowley, T.J., 1996. Pliocene climates: The nature of the problem. Mar. Micropal., 27, 3–12.Google Scholar
  4. Flower, B.P., and Kennett, J.P., 1995. Middle Miocene deepwater paleoceanography in the southwest Pacific: Relations with East Antarctic ice sheet development. Paleoceanography, 10(6), 1095–1112.Google Scholar
  5. Fronval, T., and Jansen, E., 1996. Late Neogene paleoclimates and paleoceanography in the Iceland-Norwegian Sea: Evidence from the Iceland and Vøring Plateaus. In Thiede, J., Myhre, A.M., Firth, J.V., Johnson, G.L., and Ruddimand, W.F. (eds.), Proceedings of the ODP Science Results, 151, pp. 455–468.Google Scholar
  6. Haug, G.H., and Tiedemann, R., 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393(6686), 673–676.Google Scholar
  7. Hodell, D.A., Benson, R.H., Kent, D.V., Boersma, A., and Rakic-El Bied, K., 1994. Magnetostratigraphic, biostratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from the Salé Briqueterie (northwestern Morocco): A high-resolution chronology for the Messinian stage. Paleoceanography, 9(6), 835–855.Google Scholar
  8. Jansen, E., Fronval, T., Rack, F., and Channell, J.E.T., 2000. Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr. Paleoceanography, 156, 709–721.Google Scholar
  9. Kim, S.-J., and Crowley, T.J., 2000. Increased Pliocene North Atlantic Deep Water: Cause or consequence of Pliocene warming? Paleoceanography, 15(4), 451–455.Google Scholar
  10. Lourens, L.J., and Hilgen, F.J., 1997. Long-period variation in the Earth’s obliquity and their relation to third-order eustatic cycles and the Late Neogene glaciations. Quaternary Int., 40, 43–52.Google Scholar
  11. Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J., Wilson, D., (2004) “The Neogene Period”. In: Gradstein, F., Ogg, J., Smith, A.G. (eds.), Geologic Time Scale, Cambridge University Press, Cambridge.Google Scholar
  12. Maier-Reimer, E., Mikolajewicz, U., and Crowley, T., 1990. Ocean general circulation model sensitivity experiments with an open Central America Isthmus. Paleoceanography, 5(3), 349–366.Google Scholar
  13. Mikolajewicz, U., and Crowley, T.J., 1997. Response of a coupled ocean/energy balance model to restricted flow through the central American isthmus. Paleoceanography, 12(3), 429–441.Google Scholar
  14. Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96(B4), 6829–6848.Google Scholar
  15. Pagani, M., Arthur, M.A., and Freeman, K.H., 1999. Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 14(3), 273–292.Google Scholar
  16. Raymo, M.E., 1994. The Himalayas, organic carbon burial, and climate in the Miocene. Paleoceanography, 9(3), 399–404.Google Scholar
  17. Raymo, M.E., Hodell, D.A., and Jansen, E., 1992. Response of deep ocean circulation to initiation of Northen Hemisphere glaciation (3–2 Ma). Paleoceanography, 7(5), 645–672.Google Scholar
  18. Raymo, M.E., Grant, B., Horowitz, M., and Rau, G.H., 1996. Mid-Pliocene Warmth: Stronger greenhouse and stronger conveyor. Mar. Micropal., 21, 313–326.Google Scholar
  19. Savin, S.M., Douglas, R.G., and Stehli, F.G., 1975. Tertiary marine paleotemperatures. Geol. Soc. Am. Bull., 86, 1499–1510.Google Scholar
  20. Shackleton, N.J., and Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281. Init. Rep. DSDP Proj., 29, 743–755.Google Scholar
  21. Shackleton, N.J., Le, J., Mix, A., and Hall, M.A., 1992. Carbon isotope records from Pacific surface waters and atmospheric carbon dioxide. Quaternary Sci. Rev. 11, 387–400.Google Scholar
  22. Shackleton, N.J., Hall, M.A., and Pate, D., 1995. Pliocene stable isotope stratigraphy of Site 846. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (eds.), Proceedings Of the ODP, Science Results, 138, pp. 337–355.Google Scholar
  23. Van der Burgh, J., Visscher, H., Dilcher, D.L., and Kürschner, W.M., 1993. Paleoatmospheric signatures in Neogene fossil leaves. Science, 260, 1788–1790.Google Scholar
  24. Vincent, E., and Berger, W.H., 1985. Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis. In Sundquist, E.T., and Broecker, W.S. (eds.), The Carbon Cycle and Atmospheric CO 2: Natural Variations From Archean to Present. Geophysical Monograph Series, vol. 32, pp. 455–468.Google Scholar
  25. Wright, J.D., Miller, K.G., and Fairbanks, R.G., 1992. Early and middle Miocene stable isotopes: Implications for deepwater circulation and climate. Paleoceanography, 7(3), 357–389.Google Scholar
  26. Wright, J.D., and Miller, K.G., 1996. Control of North Atlantic Deep Water circulation by the Greenland-Scotland Ridge. Paleoceanography, 11(2), 157–170.Google Scholar
  27. Zachos, J.C., Flower, B.P. and Paul, H., 1997. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature, 388(6642), 567–570.Google Scholar
  28. Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Carin Andersson

There are no affiliations available